期刊文献+

一种基于RS码的测量矩阵构造方法

Measurement Matrix Construction based on RS Code
下载PDF
导出
摘要 测量矩阵在压缩感知中有着重要作用,因而如何构造出性能优异的测量矩阵一直是该领域的研究重点。因此,通过里德-索罗门(Reed Solomon,RS)码得到一个生成矩阵,然后将张量积应用到RS码生成矩阵上产生一个新的矩阵,最后利用该矩阵构造出一个新的测量矩阵,使得该测量矩阵的相关性渐近Welch界,从而可以达到性能渐近最优。仿真结果表明,构造的测量矩阵相对于BCH矩阵和高斯矩阵在性能方面有较大提升。 Measurement matrix plays an important role in compressed sensing, and thus how to construct a high-performance measurement matrix is always the hot research topic in this field. The RS (Reed Salomon) code is used to obtain a code generator matrix, then a new matrix acquired by applying the tensor product on RS(Reed-Solomon) generator matrix. Based on it, a new measurement matrix is constructed, making the correlation coefficient of this matrix asymptotic Welch, so as to achieve asymptotic optimal performance. Simulation results indicate that, as compared to BCH matrix and Gaussian matrix, the constructed measurement matrix is greatly improved in terms of performance.
作者 倪加明 胡欢
出处 《通信技术》 2016年第9期1139-1143,共5页 Communications Technology
关键词 压缩感知 测量矩阵 RS码 张量积 compressed sensing measurement matrix RS code tensor product
  • 相关文献

参考文献10

  • 1Donoho D.Compressed Sensing[J].IEEE Trans on Information Theory,2006,52(04): 1289-1306. 被引量:1
  • 2金坚,谷源涛,梅顺良.压缩采样技术及其应用[J].电子与信息学报,2010,32(2):470-475. 被引量:78
  • 3Amini A,Marvasti F.Deterministic Construction of Binary,Bipolar,and Ternary Compressed Sensing Matrices[J].Information Theory,2011,57(04):2360-2370. 被引量:1
  • 4Yu N Y,Zhao N.Deterministic Construction of Real- valued Ternary Sensing Matrices Using Optical Orthogonal Codes[J].Signal Processing Letters,2013,20(1 1): 1106-1109. 被引量:1
  • 5Li S,Gao F,Ge G,et al.Deterministic Construction of Compressed Sensing Matrices via Algebraic Curves[J]. Information Theory,2012,58(08):5035-5041. 被引量:1
  • 6Yu N Y.Additive Character Sequences with Small Alphabetsfor Compressed Sensing Matrices[C].Acoustics,Speech and Signal Processing(ICASSP),2011:2932-2935. 被引量:1
  • 7Smolensky P.Tensor Product Variable Binding and the Representation of Symbolic Structures in Conneetionist Systems[J].Artifieial intelligence,1990,46(01): 159-216. 被引量:1
  • 8Radford D E.The Trace Function and Hopf algebras[J]. Journal of Algebra, 1994,163(03):583-622. 被引量:1
  • 9Lidl R,Niederreiter H.Finite Fields[M].Cambridge University Press, 1997. 被引量:1
  • 10Amini ,A,Montazerhodjat V,Marvasti F.Matriees with Small Coherenee Using Pary Block Codes[J].Signal Proeessing,20 ! 2,60(01): 172-181. 被引量:1

二级参考文献36

  • 1方红,章权兵,韦穗.基于非常稀疏随机投影的图像重建方法[J].计算机工程与应用,2007,43(22):25-27. 被引量:27
  • 2Donoho D L. Compressed sensing. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306. 被引量:1
  • 3Candes E, Romberg J, and Tao T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 2006, 52(2): 489-509. 被引量:1
  • 4Candes E. Compressive sampling. Int. Congress of Mathematics, Madrid, Spain, 2006, 3: 1433-1452. 被引量:1
  • 5Baraniuk R G. Compressive sensing. IEEE Signal Processing Magazine, 2007, 24(4): 118-124. 被引量:1
  • 6Brandenburg K. MP3 and AAC explained. AES 17th international conference on High-Quaiity Audio coding, Erlangen, Germany, Sept. 1999: 1-12. 被引量:1
  • 7Pennebaker W and Mitchell J. JPEG: Still image data compression standard. Van Nostrand Reinhold, 1993. 被引量:1
  • 8Candes E and Romberg J. Sparsity and incoherence in compressive sampling. Inverse Problems, 2007, 23(3):969-985. 被引量:1
  • 9Candes E and Tao T. Near-optimal signal recovery from random projections and universal encoding strategies. IEEE Transactions on Information Theory, 2006, 52(12): 5406-5425. 被引量:1
  • 10Candes E and Tao T. Decoding by linear programming. IEEE Transactions Information Theory, 2005, 51(12): 4203-4215. 被引量:1

共引文献77

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部