摘要
A calcium sulfate whisker (CSW) coated with glutaraldehyde crosslinked chitosan (GACS) was prepared to reinforce polyvinyl chloride (PVC) in this study. The results show that the optimum concentration of both chitosan (CS) and glutaraldehyde (GA) is 0.05 wt%. The tensile strength, impact strength, flexural modulus and vicat softening temperature of the PVC composite with 12 wt% of modified CSW are in- creased by 1 Z5%, 40.4%, 0.8% and 3.8% compared with those of the PVC composite with 12 wt~ of unmodified CSW, and by 2.9%, 42.4%, 2Z1% and 6.8% compared with those of pure PVC, respectively. The dynamic mechanical analysis results indicate that the modified CSW/PVC composite exhibits much higher storage modulus and glass transition temperature than those of unmodified CSW/PVC composite and pure PVC. In addition, the modified CSW/PVC composite also demonstrates good thermal properties with a high rapidest decomposition temperature (Trvd) and char residue. The scanning electron microscopy images of tensile-fractured surfaces show that the modified CSW has a strong interfacial adhesion with PVC matrix.
A calcium sulfate whisker (CSW) coated with glutaraldehyde crosslinked chitosan (GACS) was prepared to reinforce polyvinyl chloride (PVC) in this study. The results show that the optimum concentration of both chitosan (CS) and glutaraldehyde (GA) is 0.05 wt%. The tensile strength, impact strength, flexural modulus and vicat softening temperature of the PVC composite with 12 wt% of modified CSW are in- creased by 1 Z5%, 40.4%, 0.8% and 3.8% compared with those of the PVC composite with 12 wt~ of unmodified CSW, and by 2.9%, 42.4%, 2Z1% and 6.8% compared with those of pure PVC, respectively. The dynamic mechanical analysis results indicate that the modified CSW/PVC composite exhibits much higher storage modulus and glass transition temperature than those of unmodified CSW/PVC composite and pure PVC. In addition, the modified CSW/PVC composite also demonstrates good thermal properties with a high rapidest decomposition temperature (Trvd) and char residue. The scanning electron microscopy images of tensile-fractured surfaces show that the modified CSW has a strong interfacial adhesion with PVC matrix.
基金
supported by the National Natural Science Foundation of China (No. U 1507123)
the Foundation from Qinghai Science and Technology Department (No. 2014-HZ-817)