期刊文献+

基于BP神经网络与遗传算法的强光爆震弹装药优化研究 被引量:2

Research on Composition Optimization of Main Charge of Flash High-ExplosiveAmmunition Based on BP Neural Network and Genetic Algorithm Approach
下载PDF
导出
摘要 为降低强光爆震弹在使用中潜在的安全威胁,以非致命效应为出发点,采用均匀设计法进行了配方设计,基于BP神经网络建立了装药性能预测模型,采用神经网络与遗传算法相结合的方法进行了装药优化.通过声光效应试验对优化结果进行了验证,得到了最优配方:KClO4/Al/CS/环氧树脂/石墨=48/32/15/2/3.结果表明,通过装药配方的优化,提高了闪光爆震弹的综合性能,为防暴弹的性能改进提供了新的思路和方法. In order to reduce the potential security threat to living targets,this paper takes the non-lethal effects as a starting point,adopts the uniform design method for the charging design,establishes a charge performance prediction model based on BP neural network,and optimizes the charge by combining neural network with genetic algorithm approach.The optimal results are verified through acousto-optic effect test,and the optimal recipe is obtained:KClO4/Al/CS/Epoxy Resin/Graphite=48/32/15/2/3.Results show that the optimization of the charging formula improves the overall performance of the flashing detonation grenades,providing new ideas of the formulation design and performance improvement methods for the research of riot bombs.
出处 《军械工程学院学报》 2016年第4期27-31,共5页 Journal of Ordnance Engineering College
关键词 强光爆震弹 均匀设计法 遗传算法 BP神经网络 flashing stun grenade the uniform design method genetic algorithm approach BP neural network
  • 相关文献

参考文献8

二级参考文献28

共引文献68

同被引文献33

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部