期刊文献+

语音自组织特征映射神经网络矢量量化算法 被引量:1

A Speech Vector-quantization Algorithm of Self-organizing Feature Maps Neural Network
下载PDF
导出
摘要 针对数字语音信号分帧提取MFCC参数,MFCC是Mel频率倒谱系数(Mel Frequency Cepstrum Coefficient,MFCC)。Mel频率是基于人耳听觉特性提出的,它与Hz频率呈非线性对应关系,利用它们之间的这种关系,计算得到Hz频谱特征。将每帧的MFCC作为矢量进行自组织特征映射神经网络矢量量化及LBG矢量量化,通过实验对二者进行比较。仿真结果表明,自组织特征映射神经网络矢量量化算法得到的码书比LBG算法具有量化误差小、码本尺寸小的特点,进而可以节省存储空间。实验结果表明,文中方法具有一定的实用性。 MFCC parameter is extracted from digital speech frame, and MFCC is Mel Frequency Cepstrum Coefficients. Mel frequency is proposed based on human auditory characteristics, and it reflects nonlinear relationship with Hz frequency. The Hz frequency spectrum characteristics is calculated by their relationship. The MFCC of each frame is taken as vector for vector quantization of self-organizing feature maps neural network and LBG,and they are compared by experiment. Simulation shows that the self-organizing feature maps neu- ral network algorithm has smaller quantization error and code size than LBG algorithm, saving the space of memory. The experiment dem- onstrates the method is feasible.
出处 《计算机技术与发展》 2016年第9期175-177,182,共4页 Computer Technology and Development
基金 青海省自然科学基金(2013-Z-920)
关键词 LBG算法 自组织特征映射神经网络 MFCC参数 矢量量化 LBG algorithm SOFMNN MFCC VQ
  • 相关文献

参考文献15

  • 1Linde Y, Buzo A,Gray R M. An algorithm for vector quantizer design [ J ]. IEEE Transactions on Communications, 1980,28 ( 1 ) :84-95. 被引量:1
  • 2孙圣和,陆哲明著..矢量量化技术及应用[M].北京:科学出版社,2002:472.
  • 3Shen F, Hasegawa O. An adaptive incremental LBG for vector quantization [ J ]. Neural Networks, 2006,19:694 -704. 被引量:1
  • 4HaganMT DemuthHB BealeMH 戴葵 宋辉 潭明峰 等译.神经网络设计[M].北京:机械工业出版社,2002.. 被引量:90
  • 5Amerijckx C, Legaty J D, Verle-Ysen M. Image compression using self organizing maps[ J ]. Systems Analysis Model Simu- lation ,2003,43 ( 11 ) : 1529-1543. 被引量:1
  • 6Seo S, Oberayer K. Self organizing maps and elusteri:lg meth- ods for matrix data [ J]. Neural Networks, 2004, 17 : 1211 - 1230. 被引量:1
  • 7Lau K W,Yin H,Hubbard S. Kernel self-organizing maps for classification [ J ]. Neurocomputing, 2006,69 : 2033- 2040. 被引量:1
  • 8McAulie J D, Atlas L E, Rivera C. A comparison of the LBG algorithm and Kohonen neural network paradigm for image vector quantization[ C]//Proe of ICASSP. [ s. l. ] : [s. n. ], 1990:2293-2296. 被引量:1
  • 9Nasrabadi N M, King R A. Image coding using vector quanti- zation : a review [ J ]. IEEE Transactions on Communications, 1988,36 (8) :957-971. 被引量:1
  • 10Lancini R, Tubaro S. Adaptive vector quantization for picture coding using neural networks [ J ] . IEEE Transactions on Communications, 1995,43 ( 2 ) :534-544. 被引量:1

二级参考文献4

  • 1LINDA Y, BUZO A, GRAY R M. An algorithm for vector quantizer design[J]. IEEE Trans on Commun,1980,28(1):84. 被引量:1
  • 2NASSER M. NASRABADI,ROBERT A.KING. Image Coding Using Vector Quantization: A Review[J],IEEE TRANSACTION ON COMMUNICATIONS,1988,36(8):957. 被引量:1
  • 3LANCINI R,TUBARO S. Adaptive Vector Quantization for Picture Coding using Neural Networks[J].IEEE TRANSACTIONS ON COMMUNICATIONS,1995,43(2/3/4):534. 被引量:1
  • 4GOLDBERG D.E. Genetic Algorithm in Search, Optimization and Machine Learning[M]. Addison, Wesley, 1989. 被引量:1

共引文献93

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部