期刊文献+

The Fermat-Torricelli problem on surfaces 被引量:4

The Fermat-Torricelli problem on surfaces
下载PDF
导出
摘要 In this note a simple proof of the famous Fermat-Torricelli problem is given. For the vertices of a given triangle, Fermat asks for a fourth point such that the sum of its Euclidean distances to the three given points is minimized. Many authors present geometric approaches to the Fermat-Torricelli problem. We solve the problem by analytic and geometrical method and extend it to the sphere, we also characterize the median point P on the general regular surface. In this note a simple proof of the famous Fermat-Torricelli problem is given. For the vertices of a given triangle, Fermat asks for a fourth point such that the sum of its Euclidean distances to the three given points is minimized. Many authors present geometric approaches to the Fermat-Torricelli problem. We solve the problem by analytic and geometrical method and extend it to the sphere, we also characterize the median point P on the general regular surface.
作者 CHEN Zhi-guo
出处 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2016年第3期362-366,共5页 高校应用数学学报(英文版)(B辑)
关键词 Fermat-Torricelli problem median point geodesic distance regular surface Fermat-Torricelli problem median point geodesic distance regular surface
  • 相关文献

参考文献7

  • 1P Fermat. “Oeuvres”, P Tannery, C Henry, eds, Tome I, Gauthier-Villars, Paris, 1891. 被引量:1
  • 2G Jalal, J Krarup. Geometrical solution to the Fermat problem with arbitrary weights, Ann Oper Res, 2003, 123: 67-104. 被引量:1
  • 3G Jalal, J Krarup. Single-facility location problems with arbitrary weights, In: New Trends in Mathematical Programming: Homage to Steven Vajda, Kluwer Academic Publishers, Boston, MA, 1998, 101-114. 被引量:1
  • 4X Jiang. The steiner problem on a surface, Appl Math Mech, 1987, 8(10): 911-916. 被引量:1
  • 5J Krarup, S Vajda. On Torricelli’s geometrical solution to a problem of Fermat. Duality in practice, IMA J Math Appl Bus Ind, 1997, 8(3): 215-224. 被引量:1
  • 6Y S Kupitz, H Martini. Geometric aspects of the generalized Fermat-Torricelli problem, Intuitive Geometry, Bolyai Soc Math Stud, 1997, 6: 55-127. 被引量:1
  • 7H Martini, K J Swanepoel, G Weiss. The Fermat-Torricelli problem in normed planes and spaces, J Optim Theory Appl, 2002, 115(2): 283-314. 被引量:1

同被引文献17

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部