期刊文献+

Binding Number, Minimum Degree and Bipancyclism in Bipartite Graphs

Binding Number, Minimum Degree and Bipancyclism in Bipartite Graphs
原文传递
导出
摘要 Let G =(V1,V2,E) be a balanced bipartite graph with2 n vertices.The bipartite binding number of G,denoted by B(G),is defined to be n if G =Kn and min i∈{1,2}|N(S)|〈n min |N(S)|/|S|otherwise.We call G bipancyclic if it contains a cycle of every even length m for 4 ≤ m ≤ 2n.A theorem showed that if G is a balanced bipartite graph with 2n vertices,B(G) 〉 3 / 2 and n 139,then G is bipancyclic.This paper generalizes the conclusion as follows:Let 0 〈 c 〈 3 / 2 and G be a 2-colmected balanced bipartite graph with 2n(n is large enough) vertices such that B(G) c and δ(G)(2-c)n/(3-c)+2/3.Then G is bipancyclic. Let G =(V1,V2,E) be a balanced bipartite graph with2 n vertices.The bipartite binding number of G,denoted by B(G),is defined to be n if G =Kn and min i∈{1,2}|N(S)|〈n min |N(S)|/|S|otherwise.We call G bipancyclic if it contains a cycle of every even length m for 4 ≤ m ≤ 2n.A theorem showed that if G is a balanced bipartite graph with 2n vertices,B(G) 〉 3 / 2 and n 139,then G is bipancyclic.This paper generalizes the conclusion as follows:Let 0 〈 c 〈 3 / 2 and G be a 2-colmected balanced bipartite graph with 2n(n is large enough) vertices such that B(G) c and δ(G)(2-c)n/(3-c)+2/3.Then G is bipancyclic.
出处 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2016年第5期448-452,共5页 武汉大学学报(自然科学英文版)
基金 Supported by the Scientific Research Fund of Hubei Provincial Education Department(B2015021)
关键词 balanced bipartite graph HAMILTONIAN bipancyclism bipartite binding number minimum degree balanced bipartite graph Hamiltonian bipancyclism bipartite binding number minimum degree
  • 相关文献

参考文献9

  • 1Bondy J A, Murty U S R. Graph Theory with Applications [M]. New York: Macmillan, 1976. 被引量:1
  • 2Shi R. The binding number of a graph and its pancyclism [J]. Acta Mathematieae Applicatae Sinica, 1987, 3(3): 257-269. 被引量:1
  • 3Woodall D R. The binding number of a graph and its Ander- son number [J]. Journal of Combinatorial Theory Series B, 1973, 15(3): 225-255. 被引量:1
  • 4Bauer D, Schmeichel E. binding number, minimum degree, and cycle structure in graphs [J]. Journal of Graph Theory, 2012, 71(2): 219-228. 被引量:1
  • 5Hu Z, Law K, Zang W. An optimal Binding number condi- tion for bipancyclism [J]. SIAM Journal on Discrete Mathe- matics, 2013, 27(2): 597-618. 被引量:1
  • 6Hu Z Q, Sun J. Weakly bipancyclic bipartite graphs [J]. Dis- crete Applied Mathematics, 2015,194(2): 102-120. 被引量:1
  • 7孙静,胡智全.平衡二部图哈密尔顿性的一个充分条件[J].应用数学学报,2015,38(5):796-805. 被引量:1
  • 8Ash P. Dominating Cycles, Hamilton Cycles and Cycles with Many Chords in 2-Connected Graphs [D]. London: Gold- smiths College, 1985. 被引量:1
  • 9Jackson B, Li H. Hamilton cycles in 2-connected regular bipartite graphs [J]. Journal of Combinatorial Theory Series B, 1994, 62(2): 236-258. 被引量:1

二级参考文献6

  • 1Bondy J A, Murty U S R. Graph theory with applications. New York: Macmillan, 1976. 被引量:1
  • 2Hu Z, Law K, Zang W. An optimal Binding number condition for bipancyclism. SIAM J. Discrete Math., 2013, 27(2): 597-618. 被引量:1
  • 3Woodall D R. A sufficient condition for Hamiltonian circuits. J. Comb Theory B, 1978, 25(2): 184-186. 被引量:1
  • 4Voss H J, Zuluaga C. Maximale gerade and ungerade Kreise in Graphen 1. Wiss Z. Techn. Hochsch. Ilraenau, 1977,23(4): 57-70. 被引量:1
  • 5Ash P. Dominating Cycles, Hamilton cycles and cycles with many chords in 2-connected graphs. Ph.D. Thesis, Goldsmiths' College, London, England, 1985. 被引量:1
  • 6Jackson B, Li H. Hamilton cycles in 2-connected regular bipartite graphs. J. Comb. Theory B, 1994, 62(2): 236-258. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部