期刊文献+

基于小波变换的功能磁共振图像时间序列分步去噪 被引量:1

fMRI time series stepwise denoising based on wavelet transform
下载PDF
导出
摘要 功能磁共振图像(f MRI)数据中反映大脑神经活动的感兴趣信号常受到结构噪声和随机噪声的影响。为消除上述噪声对分析激活体素的影响,对经过SPM标准预处理的体素时间序列进行Activelets小波变换,并在得到尺度系数及细节系数后,针对两类噪声的不同特点进行分步去噪。第一步,在受结构噪声影响的尺度系数上,选用独立成分分(ICA)析去识别并消除结构噪声源;第二步,提出一种改进的空域相关去噪算法在细节系数上对信号进行处理。值得注意的是,该算法利用邻域体素之间的相似性,判定所处位置的细节系数反映噪声还是神经活动。实验结果表明,经过这两步处理的数据可有效消除噪声的影响,其中框架位移减少了1.5 mm,尖峰百分比减少了2%,此外由去噪后的信号获得的脑激活图中一些明显的伪激活区得到抑制。 The neural activity signal of interest is often influenced by structural noise and random noise in functional Magnetic Resonance Imaging (fMRI) data. In order to eliminate noise effects in the analysis of activate voxels, the time series of voxels preprocessed by Statistical Parametric Mapping (SPM) were transformed by Activelets wavelet. After getting scale coefficient and detail coefficient, the two kinds of noise denoised were eliminated separately according to their corresponding characteristics. Firstly, the Independent Component Analysis (ICA) was used to identify and eliminate the structural noise sources. Secondly, an improved algorithm for spatial correlation was presented on the detail coefficient. In particular, in the improved algorithm, the voxel similarity in the neighborhood was used to determine whether the detail coefficient reflected the noise or the neural activity. Experimental results show that the processing of data effectively eliminate the effect of noise; specifically, the frame displacement decreased by 1.5 mm and the percentage of spikes decreased by 2% ; in addition, the false activation regions are obviously restrained in the spatial map got by denoised signals.
出处 《计算机应用》 CSCD 北大核心 2016年第9期2601-2604,2608,共5页 journal of Computer Applications
基金 2015年江苏省六大人才高峰项目(XXRJ-012)~~
关键词 功能磁共振图像 去噪 结构噪声 随机噪声 小波变换 functional Magnetic Resonance Imaging (fMRI) denoising structural noise random noise wavelettransform
  • 相关文献

参考文献17

  • 1薛绍伟,唐一源,李健,张兰华,曹宸.一种基于fMRI数据的脑功能网络构建方法[J].计算机应用研究,2010,27(11):4055-4057. 被引量:17
  • 2SHIRER W R, JIANG H, PRICE C M, et al. Optimization of rs-fMRI pre-processing for enhanced signal-noise separation, test-retest reliability, and group discrimination [J]. Neuroimage, 2015, 117:67-79. 被引量:1
  • 3BULLMORE E, LONG C, SUCKLING J, et al. Colored noise and computational inference in fMRI time series analysis: resampling methods in time and wavelet domains [J]. Neuroimage, 2001, 13(6): 86. 被引量:1
  • 4MALDJIAN J A, LAURIENTI P J, KRAFT R A, et al. An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets [J]. Neuroimage, 2003, 19(3): 1233-1239. 被引量:1
  • 5FEIS R A, SMITH S M, FILIPPINI N, et al. ICA-based artifact removal diminishes scan site differences in multi-center resting-state fMRI [EB/OL]. [2015-11-15]. http://europepmc.org/backend/ptpmcrender.fcgi?accid=PMC4621866&blobtype=pdf. 被引量:1
  • 6BRIGHT M G, MURPHY K. Is fMRI "noise" really noise? Resting state nuisance regressors remove variance with network structure [J]. Neuroimage, 2015, 114: 158-169. 被引量:1
  • 7KARAHANOGLU F I, CABALLERO-GAUDES C, LAZEYRAS F, et al. Total activation: fMRI deconvolution through spatio-temporal regularization [J]. Neuroimage, 2013, 73: 121-134. 被引量:1
  • 8KHALIDOV I, VAN DE VILLE D, FADILI J, et al. Activelets and sparsity: a new way to detect brain activation from fMRI data [J]. Proceedings of SPIE, 2007, 23(3): 380-388. 被引量:1
  • 9MANOKAR N V, MANOKAR V, RINESH R, et al. Wavelets based decomposition and classification of diseased fMRI brain images for inter racial disease types of Alzheimer's Vs tumors using SOFM and enhancement by LVQ neural networks [C]// Proceedings of the 2012 2nd IEEE International Conference on Parallel Distributed and Grid Computing. Piscataway, NJ: IEEE, 2012: 822-827. 被引量:1
  • 10BERGEAUD F, MALLAT S. Adaptative image decompositions in a wavelets dictionary [M]// BERGER M-O, DERICHE R, HERLIN I, et al. ICAOS '96. Berlin: Springer, 1996: 216-224. 被引量:1

二级参考文献12

  • 1SHEHZAD Z,KELLY A M C, REISS P T, et al. The resting brain: unconstrained yet reliable [ J ]. Cereb Cortex, 2009,19 ( 10 ) : 2209- 2229. 被引量:1
  • 2ZHANG Dong-yang, RAICHLE M E. Disease and the brain' s dark energy[ J]. Nature Reviews Neurology,2010,6( 1 ) : 15-28. 被引量:1
  • 3HAMPSON M,PETERSON B S,SKUDLARSKI P, et al. Detection of functional connectivity using temporal correlations in MR images [ J ]. Human Brain Mapping,2002,15(4):247-262. 被引量:1
  • 4ACHARD S,BULLMORE E. Efficiency and cost of economical brain functional networks [ J ]. PLOS Computational Biology, 2007, 3 (2) :174-183. 被引量:1
  • 5WATTS D J,STROGATZ S H. Collective dynamics of " small-world" networks[J]. Nature,1998,393(6684) :440-442. 被引量:1
  • 6BASSETT D S, BULLMORE E. Small-world brain networks [ J ]. Neuroscientist,2006,12 (6) :512- 523. 被引量:1
  • 7ZAMORA-LOPEZ G,ZHOU Chang-song, KURTHS J. Graph analysis of cortical networks reveals complex anatomical communication substrate[ J ]. Chaos,2009,19( 1 ) :0151171-0151177. 被引量:1
  • 8FRISTON K J. Modalities, modes, and models in functional neuroimaging [ J ]. Science,2009,326 ( 5951 ) : 399-403. 被引量:1
  • 9BANDETTINI P A. What' s new in neuroimaging methods [ J ]. Annals of the New York Academy of Sciences, :2009,1156 ( 1 ) : 260-293. 被引量:1
  • 10EIJSDEN P van,HYDER F,ROTHMAN D L, et al. Neurophysiology of functional imaging [ J ]. Neuroimage,2009,45 (4) : 1047-1054. 被引量:1

共引文献16

同被引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部