期刊文献+

抑制式模糊C均值聚类惩罚因子的改进 被引量:5

Improvement of penalty factor in suppressed fuzzy C-means clustering
下载PDF
导出
摘要 针对传统模糊C均值(FCM)算法在聚类过程中存在收敛速度慢、对大数据处理实时性不强等问题,提出了一种基于惩罚因子的样本隶属度改进算法。首先分析抑制式模糊C均值(SFCM)聚类特点,研究惩罚因子对样本隶属度修正的触发条件,进而设计出基于惩罚因子的SFCM聚类隶属度动态修正算法。通过算法实现样本向"两极移动",达到快速收敛之目的。理论分析与实验结果表明,在相同的初始化条件下,改进算法的执行时间效率比传统FCM算法提高约40%,比基于优化选择的SFCM(OS-SFCM)算法提高10%,其聚类准确度与其他两种算法相比也有一定的提高。 Aiming at the problem of slow convergence and weak real-time processing of large data in general Fuzzy C- Means (FCM) algorithm, an improved method of penalty factor on sample membership was proposed. Firstly, the characteristics of Suppressed Fuzzy C-Means (SFCM) clustering were analyzed, and the trigger condition for adjusting sample membership by penalty factor was studied, and then the dynamic membership adjusting scheme of SFCM based on penalty factor was designed. By using the algorithm, the samples are "moved to the poles" to achieve the purpose of rapid convergence. Theoretical analysis and experimental result show that under the same initial condition, the execution time efficiency of the improved algorithm is increased by 40% and 10% respectively compared with the traditional FCM and 0ptimal-Selection-based SFCM (OS-SFCM), at the same time, the clustering accuracy is also improved.
作者 肖满生 肖哲
出处 《计算机应用》 CSCD 北大核心 2016年第9期2427-2431,共5页 journal of Computer Applications
基金 湖南省自然科学基金资助项目(2015JJ2047) 湖南省教育厅项目(13C032) 湖南工业大学科研项目(2014HXZ28)
关键词 抑制式模糊C均值 惩罚因子 模糊隶属度 快速收敛 Suppressed Fuzzy C-Means (SFCM) penalty factor fuzzy membership fast convergence
  • 相关文献

参考文献20

  • 1DUNN J C. Well-separated clusters and the optimal fuzzy partitions [J]. Journal of Cybernet, 1974, 4(1): 95-104. 被引量:1
  • 2BEZDEK J C. Pattern Recognition with Fuzzy Objective Function Algorithms [M]. Norwell, MA: Kluwer Academic Publishers, 1981: 34-41. 被引量:1
  • 3BEZDEK J C, KELLER J, KRISNAPURAM R, et al. Fuzzy Models and Algorithms for Pattern Recognition and Image Processing [M]. New York: Springer, 1999: 65-69. 被引量:1
  • 4FAN J L, ZHEN W Z, XIE W X. Suppressed fuzzy c-means clustering algorithm [J]. Pattern Recognition Letters, 2003, 24(9/10): 1607-1612. 被引量:1
  • 5张锋,赵杰煜,朱绍军.可区分惩罚控制竞争学习算法[J].模式识别与人工智能,2014,27(5):426-434. 被引量:1
  • 6SZILáGYI L, SZILáGYI S M. Generalization rules for the suppressed fuzzy c-means clustering algorithm [J]. Neurocomputing, 2014, 139(5223): 298-309. 被引量:1
  • 7SZILáGYI L, SZILáGYI S M, BENYóZ. Analytical and numerical evaluation of the suppressed fuzzy c-means algorithm: a study on the competition in c-means clustering models [J]. Soft Computing, 2010, 14(5): 495-505. 被引量:1
  • 8HUNG W L, YANG M S, CHEN D H. Parameter selection for suppressed fuzzy c-means with an application to MRI segmentation [J]. Pattern Recognition Letters, 2006, 27(5): 424-438. 被引量:1
  • 9HUNG W L, CHEN D H, YANG M S. Suppressed fuzzy-soft learning vector quantization for MRI segmentation [J]. Artificial Intelligence in Medicine, 2011, 52(1): 33-43. 被引量:1
  • 10LAN H, JIN S B . An improved suppressed FCM algorithm for image segmentation [J]. Advanced Materials Research, 2013,712/713/714/715: 2349-2353. 被引量:1

二级参考文献41

  • 1黄建军,谢维信.半抑制式模糊C-均值聚类算法[J].中国体视学与图像分析,2004,9(2):109-113. 被引量:11
  • 2陈梅,王健.基于改进抑制式FCM聚类算法的图像分割[J].信息技术与信息化,2007(4):77-78. 被引量:2
  • 3Bezdek, J.C. Pattern Recognition with Fuzzy Objective Function Algorithms [M]. Plenum, New York, 1981,43-93. 被引量:1
  • 4Choe, Howon and Jordan Jay B, On the Optimal Choice of Parameters in a Fuzzy C-Means Algorithm[P]. In: IEEE Internat.Conf. on Fuzzy Systems Town and County Hotel San Diego, CA, 1992, 349–353. 被引量:1
  • 5谢维信 刘健庄.一种混合硬聚类和模糊聚类的新算法——双层模糊C均值聚类算法[J].模糊系统与数学,1991,(6):77-85. 被引量:1
  • 6Jiulun Fan, Wenzhi Zhen and Weixin Xie, Suppressed Fuzzy C-Means Clustering Algorithm [J]. Pattern Recognition Letters, 2003(24):1607-1612. 被引量:1
  • 7LAN Hong, ZHANG Lu, WANG Xuan. Initialization techniques for Chml-Vese model with thresholding[ C]//Pruc. International Confer- ence on Applied Mechanics,Mechatronics Automation & System Simula- tion. [ S. l. ] :Applied Mechanics and Materials,2012:227-232. 被引量:1
  • 8BEZDEK J C. Pattern recognition with fuzzy objective function algorithms [ M ]. New York : Plenum, 1981:43-93. 被引量:1
  • 9Hofmann T, Buhmann J M. Competitive Learning Algorithms for Robust Vector Quantization. IEEE Trans on Signal Processing, 1998, 46(6) : 1665-1675. 被引量:1
  • 10Hsu C C. Generalizing Self-Organizing Map for Categorical Data. IEEE Trans on Neural Networks, 2006, 17(2) : 294-304. 被引量:1

共引文献17

同被引文献51

引证文献5

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部