摘要
该文研究如下抽象多项分数阶微分方程D_t^(α_n)u(t)+(Σ)_(j=1)^(n-1)A_jD_t^(uj)u(t)=AD_t~αu(t)+f(t).t∈(0.τ),(0.1)其中n∈N\{1},算子A,A1,…,A_(n-1)为复Banach空间E上的闭线性算子,0≤α_1<…<α_n,0≤α<α_n,0<τ≤∞,f(t)为E-值函数,D_t~α表示α阶Riemann—Liouville分数阶导数^([5]).延续着作者先前在文献[22,24 25]和[34]中的研究工作,该文引入并系统分析了方程(0.1)的若干类新的k-正则(C_1,C_2)-存在和唯一(生成)族,并对抽象的理论性结果给出了丰富的例子来阐明.
In this paper, we investigate the following abstract multi-term fractional differential equation Dtαnu(t)+AjDtαju(t)=ADtαu(t)+f(t),t∈(0,τ),where n∈N/{1}, A and A1,…,An-1 are closed linear operators on a complex Banach space E, 0≤α1〈…〈αn, 0≤α〈αn, 0〈τ≤∞, f(t) is an E-valued function, and Dtα denotes the Riemann-Liouville fractional derivative of order α ([5]). We introduce and systematically analyze several new types of k-regularized (C1,C2)-existence and uniqueness (propagation) families for (0.1), continuing in such a way our previous researches raised in [22, 24-25] and [34]. Plenty of various examples illustrates our abstract results.
出处
《数学物理学报(A辑)》
CSCD
北大核心
2016年第4期601-622,共22页
Acta Mathematica Scientia
基金
国家自然科学基金(11371263)
教育部新世纪优秀人才基金资助