期刊文献+

Metabarcoding技术在真菌多样性研究中的应用 被引量:7

Application of metabarcoding technology in studies of fungal diversity
原文传递
导出
摘要 由于受到气候变化、土地利用变化及环境污染等诸多因素的干扰,真菌多样性受到不容忽视的威胁,亟需得到保护。构建物种数据库是实现真菌多样性研究和保护的重要前提。近年来兴起的DNA条形码及metabarcoding技术能够在很大程度上弥补传统鉴定方法的缺陷,可对真菌物种进行大规模、准确、快速、高效地鉴定。本文梳理了metabarcoding技术在真菌物种多样性评估、真菌多样性影响机制和真菌古生态重建等研究中的应用,同时强调了metabarcoding技术用于真菌多样性研究尚处于初期阶段,在构建有效参照数据库、优化实验流程以及升级生物信息学工具等方面仍需要进一步的完善。建议加强真菌分类学家、生态学家以及计算机工具研发工程师之间的合作,共同解决metabarcoding技术在真菌多样性研究及应用中面临的问题,为宏观尺度上真菌多样性保护提供更加科学的依据。 Fungal diversity is threatened by climate change, land-use change, and environmental pollution, and requires urgent conservation action. Construction of the fungal species database is an important prerequisite for the study and conservation of fungal diversity. Recently developed DNA barcoding and metabarcoding technologies can provide accurate, rapid, and highly efficient identification on a large scale, and to a large extent compensate for the defects of traditional identification methods. In this paper, we review the application of metabarcoding in fungal species diversity assessment, the study of mechanisms underlying fungal diversity, and the reconstruction of fungal palaeoecology. We emphasize that the application of metabarcoding technology in fungal diversity studies is still in the primary phase, and greater efforts are needed in the construction of reliable reference databases, the optimization of experimental procedures, and updates of bioinformatics tools. Hence, we suggest enhancing cooperation among fungal taxonomists, ecologists, and computer technicians. They should work together to address problems in fungal diversity studies via metabarcoding, which would provide more sound scientific evidence for fungal diversity conservation on a large scale.
出处 《生物多样性》 CAS CSCD 北大核心 2016年第8期932-939,共8页 Biodiversity Science
基金 国家自然科学基金(31500455) 中国博士后面上基金(2015M571663) 环保公益性行业科研专项(201409061)
关键词 metabarcoding DNA条形码 真菌多样性保护 物种鉴定 高通量测序 metabarcoding DNA barcoding fungal diversity conservation species identification high throughput sequencing
  • 相关文献

参考文献68

  • 1Abarenkov K, Tedersoo L, Nilsson RH, Vellak K, Saar I, Vel- dre V, Parmasto E, Prous M, Aan A, Ots M (2010) Plu- toF--a web based workbench for ecological and taxonomic research, with an online implementation for fungal ITS se- quences. Evolutionary Bioinformatics, 6, 189-196. 被引量:1
  • 2Aptroot A, van Geel B (2006) Fungi of the colon of the Yukagir Mammoth and from stratigraphically related per- mafrost samples. Review of Palaeobotany and Palynology,141,225-230. 被引量:1
  • 3Amolds E (2001) The future of fungi in Europe: threats, con- servation and management. In: Fungal Conservation: Issues and Solutions (eds Moore D, Nauta MM, Evans SE, Rothe- roe M), pp. 64-80. 被引量:1
  • 4Cambridge University Press, Cambridge. Bilint M, Schmidt PA, Sharma R, Thines M, Schmitt I (2014) An Illumina metabarcoding pipeline for fungi. Ecology and Evolution, 4, 2642-2653. 被引量:1
  • 5Bazzicalupo AL, Blint M, Schmitt I (2013) Comparison of ITS1 and ITS2 rDNA in 454 sequencing of hyperdiverse fungal communities. Fungal Ecology, 6, 102-109. 被引量:1
  • 6Begerow D, Nilsson H, Unterseher M, Maier W (2010) Current state and perspectives of fungal DNA barcoding and rapid identification procedures. Applied Microbiology and Bio- technology, 87, 99-108. 被引量:1
  • 7Bellemain E, Carlsen T, Brochmann C, Coissac E, Taberlet P, Kauserud H (2010) ITS as an environmental DNA barcode for fungi: an in silico approach reveals potential PCR biases. BMC Microbiology, 10, 189. 被引量:1
  • 8Bellemain E, Davey ML, Kauserud H, Epp LS, Boessenkool S, Coissac E, Geml J, Edwards M, Willerslev E, Gussarova G (2013) Fungal palaeodiversity revealed using high-throu- ghput metabarcoding of ancient DNA from arctic perma- frost. Environmental Microbiology, 15, 1176-1189. 被引量:1
  • 9Berbee ML, Taylor JW (2010) Dating the molecular clock in fungi--how close are we? Fungal Biology Reviews, 24, 1-16. 被引量:1
  • 10Blaalid R, Kumar S, Nilsson RH, Abarenkov K, Kirk P, Kauserud H (2013) ITS1 versus ITS2 as DNA metabarcodes for fungi. Molecular Ecology Resources, 13,218-224. 被引量:1

二级参考文献41

  • 1Ley RE, Peterson DA, Gordon JI. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell, 2006, 124(4): 837-848. 被引量:1
  • 2Handelsman J, Rondon MR, Brady SF, et al. Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem Biol, 1998, 5(10):R245-R249. 被引量:1
  • 3Dusko Ehrlich S, MetaHIT consortium. Metagenomies of the intestinal microbiota: potential applications. Gastroenterol Clin Biol, 2010, 34 Suppl 1:$23-$28. 被引量:1
  • 4Turnbaugh P J, Ley RE, Hamady M, et al. The human microbiome project. Nature, 2007, 449(7164):804-810. 被引量:1
  • 5Gilbert JA, Meyer F, Jansson J, et al. The Earth Microbiome Project: Meeting report of the "1 EMP meeting on sample selection and acquisition" at Argonne National Laboratory October 6 2010. Stand Genomic Sci, 2010, 3(3):249-253. 被引量:1
  • 6Williamson S J, Rusch DB, Yooseph S, et al. The Sorcerer II Global Ocean Sampling Expedition: metagenomic characterization of viruses within aquatic microbial samples. PLoS One, 2008, 3(1):e1456. 被引量:1
  • 7Woese CR. Bacterial evolution. Microbiol Rev, 1987, 51 (2):221-271. 被引量:1
  • 8Lazarevic V, Whiteson K, Huse S, et al. Metagenomic study of the oral microbiota by Illumina high-throughput sequencing. J Microbiol Methods, 2009, 79(3):266-271. 被引量:1
  • 9Tumbaugh P J, Hamady M, Yatsunenko T, et al. A core gut microbiome in obese and lean twins. Nature, 2009, 457(7228):480- 484. 被引量:1
  • 10Roesch LF, Fulthorpe RR, Riva A, et al. Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J, 2007, 1(4):283-290. 被引量:1

共引文献31

同被引文献96

引证文献7

二级引证文献80

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部