期刊文献+

围岩热物性对隧道衬砌热交换器换热的影响研究 被引量:2

Influence of surrounding rocks thermal parameters on the thermal performance of tunnel lining heat exchangers
下载PDF
导出
摘要 基于隧道衬砌热交换器的传热特点,建立隧道衬砌热交换器的三维传热数值计算模型,并与现场试验数据进行对比验证。隧道衬砌热交换器的热交换管路埋设于不同级别围岩中,而不同级别围岩的热物性存在显著差异。依据不同级别围岩裂隙参数的取值范围,计算围岩导热系数和比热容的取值区间,数值计算分析导热系数和比热容对衬砌热交换器换热的影响。研究结果表明:衬砌热交换器的换热量随围岩导热系数呈线性增加趋势,且增长速率不随运行时间而改变,宜选择在导热性好的围岩中铺设热交换管;围岩比热容对衬砌热交换器换热量的影响具有时效性,在系统运行初期,热交换量随围岩比热容的增大而增加,但随着运行时间的增加,比热容对围岩换热量的影响逐渐减弱,建议地源热泵系统采取间歇运行的模式。 Based on the heat transfer characteristics of tunnel lining exchanger, this paper estabilished three-di-mensional heat transfer numerical model which fully considers convective heat transfer between air and lining, heat transfer between heat carrier liquid and surrounding rock and the heat conduction in surrounding rock. The accuracy of numerical results was verified with the field test monitoring data. The influence of surrounding rock thermal physical parameters( such as thermal conductivity, specific heat capacity) on the heat exchange rate of surrounding rock was studied to provide guidance for the design of the tunnel lining GHEs. The geothermal energy output of tunnel lining GHEs presents a linear variation with the thermal conductivity increase, and the growth rate does not change with the running time. The heat exchange pipe should be laid in the surrounding rock with good thermal conductivity. The geothermal energy output of tunnel lining GHEs decreases exponentially with the increase of flow rate.The effect of specific heat capacity increase on geothermal energy output gradually weaken with the increase of running time, it is better that the ground source heat pump system adopts the intermittent op-eration mode.
作者 刘胜
出处 《铁道科学与工程学报》 CAS CSCD 北大核心 2016年第8期1593-1599,共7页 Journal of Railway Science and Engineering
关键词 隧道 地源热泵 换热器 围岩热物性参数 换热 tunnel heat pump ground heat exchangers thermal physical parameters heat exchange
  • 相关文献

参考文献8

二级参考文献69

  • 1田俊峰,杨更社,刘慧.寒区岩石隧道冻害机理及防治研究[J].地下空间与工程学报,2007,3(z2):1484-1489. 被引量:37
  • 2李素芬,王金香,葛玉林,东明.热渗耦合作用下U型埋管换热器的数值模拟[J].热科学与技术,2006,5(4):301-305. 被引量:8
  • 3王海彦,周敏娟,冯雪芹.高寒地区隧道的冻害机理综述[J].石家庄铁路职业技术学院学报,2007,6(2):29-32. 被引量:8
  • 4W Unterberger,H Hofinger,T Grünstudl,etc.Utilization of Tunnels as Sources of Ground Heat and Cooling-Practical Applications in Austria.http://www.ic-vienna.at. 被引量:1
  • 5Brandl,H.Energy piles and diaphragm walls for heat transfer from and into ground.3rd International Geotechnical Seminar,Deep Foundations and Auger Piles Ⅲ.University of Gent,Belgium.Proceedings:A.A.Balkema,Rotterdam,1998. 被引量:1
  • 6Brandl,H.Energy Piles for heating and cooling of buildings.Seventh International Conference & Exhibition on Pilling and Deep Foundations,Vienna,Austria,1998. 被引量:1
  • 7Brandl,H.Energy foundations and other thermo-active ground structures[J].Geotechnique,2006,56(2),81-122. 被引量:1
  • 8夏才初.寒区公路隧道防冻保暖技术及其发展趋势[C].2009年全国公路隧道学术交流会论文集.重庆:重庆大学出版社,2009. 被引量:12
  • 9BRANDL H. Energy foundations and other thermo-active structures[J] Geotechnique, 2006, 56(2): 81- 122. 被引量:1
  • 10ADAM D, MARKIEWICZ R. Energy from earth-coupled structures, foundation, t uunelandsewers[J]. Geoteehnique, 2009, 59(3): 229- 236. 被引量:1

共引文献176

同被引文献9

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部