期刊文献+

基于SURF特征匹配的电气化铁路接触网支撑装置旋转双耳不良状态检测 被引量:9

Defective Condition Detection of Rotary Double Ears of Catenary Support Device of Electrified Railway Based on Feature Matching of SURF
下载PDF
导出
摘要 针对电气化铁路接触网支撑装置中旋转双耳耳片断裂问题,提出一种基于快速鲁棒性特征SURF(Speeded-up Robust Features)匹配的图像检测方法。利用标准旋转双耳图像与待检测图像局部不变特征点的匹配,实现旋转双耳的初识别;应用Hough变换实现耳片精确定位;通过耳片局部图像中的灰度方差判断耳片是否存在断裂状态。实验表明,该方法能在复杂图像中较准确地识别耳片断裂特征,为旋转双耳的状态检测提供参考。 A novel image detection method based on speeded-up robust features(SURF) was proposed, in order to detect the fracture of the ear pieces of the rotary double ears of the catenary support device of electrified railway. Firstly, the local invariant feature points were matched between standard image of rotary double ears and sampled image to be detected to realize the initial recognition of the rotary ears. Secondly, the ears were accurately located through Hough transform. Lastly, the fracture of the ear pieces was distinguished by the gray variance in the local image of the ear piece. The experiments showed that this method can accurately identify the fracture features of the ears in the intricate graphics, and can offer a reference to the state detection of the rotary double ears.
出处 《铁道学报》 EI CAS CSCD 北大核心 2016年第8期28-34,共7页 Journal of the China Railway Society
基金 西安铁路职业技术学院课题(XTZY15G05)
关键词 旋转双耳 SURF 局部不变性 灰度方差 rotary double ears SURF local invariant feature gray variance
  • 相关文献

参考文献9

二级参考文献81

共引文献80

同被引文献128

引证文献9

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部