期刊文献+

采用全局相似性测量的彩色图像分割 被引量:6

Color Image Segmentation by Using Global Similarity Measure
下载PDF
导出
摘要 本文提出一种新的采用全局相似性测量的彩色图像分割算法。该算法将图像分割问题表述为求解能量泛函最小化的问题。利用Bhattacharyya距离测量前景和背景之间的概率分布函数的全局相似性,并将Bhattacharyya系数作为最终的能量泛函。由于高阶能量项的引入,该能量的最小化通常是一个NP难题,为了能够有效的优化该能量泛函,本文提出一个辅助上界函数并且利用graph cuts对该函数进行优化求解。该辅助函数在优化的过程中能够保证能量递减。该算法能够应用于多种分割问题,包括交互式分割、显著性分割等。实验结果表明,算法具有全局分割的特点,能够对彩色图像进行较准确的分割。 A novel color image segmentation algorithm by using global similarity measure is proposed in this paper. The al- gorithm states the image segmentation problem as energy functional minimization. The Bhattacharyya distance is utilized to measure the global similarity of probability distribution functions between foreground and background. The Bhattacharyya coefficient is adopted as final energy functional. Since the high-order energy term is introduced, minimization of such ener- gy is generally NP-hard. In order to optimize the energy functional efficiently, an auxiliary upper bound function is pro- posed and it is optimized by graph cuts. The auxiliary function can guarantee to decrease the energy during the optimization process. The algorithm can be used in various segmentation problems, including interactive segmentation and sailency seg- mentation. Experimental results show that the proposed algorithm has global segmentation feature, which can segment color images correctly.
作者 王瑜 闫沫
出处 《信号处理》 CSCD 北大核心 2016年第8期951-959,共9页 Journal of Signal Processing
基金 陕西省教育厅科研计划(14JK1427)资助项目
关键词 图像分割 全局相似性 BHATTACHARYYA距离 图割 image segmentation global similarity Bhattacharyya distance graph cuts
  • 相关文献

参考文献15

  • 1Wu Y, He C. A convex variational level set model for im- age segmentation[J]. Signal Processing, 2015, 106: 123- 133. 被引量:1
  • 2Wang X, Min H, Zou L, et al. A novel level set method for image segmentation by incorporating local statistical a- nalysis and global similarity t [ J ]. PatternRecognition, 2015, 48: 189-204. 被引量:1
  • 3王顺凤,冀晓娜,张建伟,陈允杰,方林.局部熵驱动的GAC模型在生物医学图像分割中的应用[J].电子学报,2013,41(12):2487-2492. 被引量:6
  • 4E1-Zehiry N, Grady L. Combinatorial optimization of the discretized multiphase Mumford-Shah functional [ J ]. In- ternational Journal of Computer Vision, 2013, 104 ( 3 ) : 270-285. 被引量:1
  • 5Goreliek L, Boykov Y, Veksler O, et al. Submodulariza- tion for binary pairwise energies [ C 1 ff IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2014: 1154-1161. 被引量:1
  • 6Nieuwenhuis C, Toppe E, Cremers D. A survey and com- parison of discrete and continuous multi-label optimization approaches for Potts model[J]. International Journal of Computer Vision, 2013, 104 (3) : 223-240. 被引量:1
  • 7刘松涛,殷福亮.基于图割的图像分割方法及其新进展[J].自动化学报,2012,38(6):911-922. 被引量:142
  • 8Ayed I, Chen H, Punithakumar K, et al. Graph cut seg- mentation with a global constraint: Recovering region dis- tribution via a bound of the bhattacharyya measure [ C ]//// IEEE Conference on Computer Vision and Pattern Recog- nition (CVPR), 2010: 3288-3295. 被引量:1
  • 9Nambakhsh C, Yuan J, Punithakumar K, et al. Left ventri-cle segmentation in MRI via convex relaxed distribution matching[ J ]. Medical Image Analysis, 2013,17 : 1010-1024. 被引量:1
  • 10Tang M, Ayed I, Boykov Y. Pseudo-Bound Optimization for Binary Energies [ C ]//Proc. of European Conference on Computer Vision ( ECCV), 2014 : 691-707. 被引量:1

二级参考文献98

  • 1唐鹏,高琳,盛鹏.基于动态形状的红外目标提取算法[J].光电子.激光,2009,20(8):1049-1052. 被引量:3
  • 2闫成新,桑农,张天序.基于图论的图像分割研究进展[J].计算机工程与应用,2006,42(5):11-14. 被引量:33
  • 3陶文兵,金海.一种新的基于图谱理论的图像阈值分割方法[J].计算机学报,2007,30(1):110-119. 被引量:57
  • 4Pal N R, Pal S K. A review on image segmentation tech- niques. Pattern Recognition, 1993, 26(9): 1277-1294. 被引量:1
  • 5Veksler O. Efficient Graph-based Energy Minimization Methods in Computer Vision [Ph.D. dissertation], Cornell University, USA, 1999. 被引量:1
  • 6Bhandarkar S M, Zhang H. A comparison of stochastic op- timization techniques for image segmentation. International Journal o? Intelligent Systems, 2000, 15(5): 441-476. 被引量:1
  • 7Wang J S, Swendsen R H. Cluster Monte Carlo algorithms. Physica A: Statistical Mechanics and Its Applications, 1990, 167(3): 565--578. 被引量:1
  • 8Tu Z W, Zhu S C. Image segmentation by data-driven Markov chain Conte Carlo. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(5): 657-673. 被引量:1
  • 9Barbu A, Zhu S C. Generalizing Swendsen-Wang to sam- pling arbitrary posterior probabilities. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(8): 1239-1253. 被引量:1
  • 10MarteUi A, An application of heuristic search methods to edge and contour detection. Communications of the ACM, 1976, 19(2): 73-83. 被引量:1

共引文献146

同被引文献46

引证文献6

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部