期刊文献+

石墨烯、氧化石墨烯改性羟基磷灰石制备及研究进展

Preparation and Progress of Graphene/Graphene Oxide Modified Hydroxyapatite
下载PDF
导出
摘要 羟基磷灰石是一种具有优秀的生物相容性以及骨传导性的材料,但因其较差的力学性能,该材料在临床上的应用受到了较大限制。石墨烯、氧化石墨烯作为新兴的材料,因为独特的层状结构而有着不错的力学性能,因此利用石墨烯、氧化石墨烯对羟基磷灰石进行改性从而提升羟基磷灰石的性能是近期研究的热点。这篇综述简要介绍了近年来关于以石墨烯及氧化石墨烯作为支撑材料对羟基磷灰石进行改性的合成方法及所得产物的性能变化,对其主要研究进展,包括制备、性能和特点进行了探究。 Although hydroxyapatite possesses superior osteoconductivity and bioactivity, the clinical application of hydroxyapatite is restricted due to its poor mechanical property. As novel materials, graphene/graphene oxide has high mechanical strength because of their unique lamellar structures. In order to improve the performance of hydroxyapatite, recently researchers have focused on how to modify hydroxyapatite using graphene/grapene oxide. The review introduces several synthesis methods of using graphene and graphene oxide as supporting material to modify hydroxyapatite, and the properties of products are investigated. The recent progress of study is also explored including the preparation, performance and characteristic of modified hydroxyapatite.
出处 《广东化工》 CAS 2016年第16期260-263,269,共5页 Guangdong Chemical Industry
基金 国家自然科学基金资助项目(21471102) 深圳市科技基础研究计划资助项目(JCYJ20150525092941007)
关键词 生物材料 羟基磷灰石 石墨烯:氧化石墨烯 改性方法 综述 biomaterials hydroxyapatite graphene grapheneoxide modified methods review
  • 相关文献

参考文献56

  • 1P O'Hare, BJ Meenan, GA Burke, et al. Biological responses to hydroxyapatite surfaces deposited via a co-incident microblasting technique [J]. Biomaterials, 2010, 31: 515-522. 被引量:1
  • 2MY Wu, QY Wang, XQ Liu, et al. Biomimetic synthesis and characterization of carbon nanofiber/hydroxyapatite composite scaffolds [J]. Carbon, 2013, 35: 335-345. 被引量:1
  • 3M Roy, A Bandyopadhyay, S Bose. Induction plasma sprayed Sr and Mg doped nano hydroxyapatite coatings on Ti for bone implant[J]. Journal of Biomedical Material Research Part B, 2011, 99(2): 258-265. 被引量:1
  • 4A Pittrof, S Bauer, P Schmuki. Micropatterned TiO2 nanotube surfaces for site-selective nucleation of hydroxyapatite from simulated body fluid[J]. Acta Biomaterialia, 2011, 7(1): 424-431. 被引量:1
  • 5H Li, KA Khor, P Cheang. Titanium dioxide reinforced hydroxyapatite coatings deposited by high velocity oxy-fuel (HVOF) spray[J]. Biomaterials, 2002, 23: 85-91. 被引量:1
  • 6D Lahiri, V Singh, AP Benaduce, et al. Boron nitride nanotube reinforced hydroxyapatite composite: mechanical and tribological performance and in-vitro biocompatibility to osteoblasts[J]. Journal of the Mechanical Behavior ofBiomedicalMaterials, 2011, 4(1): 44-56. 被引量:1
  • 7LM Epure, S Dimitrievska, Y Merhi, et al. The effect of varying A1203 percentage in hydroxyapatite/A1203 composite materials: morphological, chemical and cytotoxic evaluation[J]. Journal of Biomedical Material Research PartA, 2007, 83: 1009-1023. 被引量:1
  • 8G Wei, JT Zhang, L Xie, et al. Biomimetic growth ofhydroxyapatite on super water-soluble carbon nanotube protein hybrid nanofibers[J]. Carbon, 2011, 49: 2216-2226. 被引量:1
  • 9Debrupa L, Ana PB, Lidia K, et al. Quantification of carbon nanotube induced adhesion of osteoblast on hydroxyapatite using nano-scratch technique [J]. Nanotechnology, 2011, 22(35): 5703-5712. 被引量:1
  • 10CJ Damien, JR Parsons. Bone graft and bone graft substitutes: a review of current technology and applications[J]. Journal of Applied Biomaterials, 1991, 2: 197-208. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部