期刊文献+

面向用户话题相似性特征的链路预测方法 被引量:4

A Link Prediction Method Based on Similarity of User's Topics
下载PDF
导出
摘要 针对线上用户间的链路预测对用户文本内容特征的挖掘不够充分的现象,提出了面向用户兴趣话题相似性的二次特征抽取方法。该方法应用主题模型得到任意用户的主题分布,利用用户在主题上相异的分布比例提取各自的兴趣话题集合,基于兴趣话题集合构造了一组话题相似性特征用于链路预测。不同于传统方法中对用户主题分布的直接利用,该方法对用户文本内容的相似性特征进行了再次挖掘,使得文本特征具有等同于结构特征的预测能力,并能够作为结构预测特征的有效补充。实验结果表明,内容特征的独立预测效果普遍优于结构特征,并且在联合预测中将结构特征的预测效果提高了3%。 A new topical feature extraction method based on similarities of user's topics is proposed to solve the insufficiency of topical feature mining of link predictions in social networks. The topic distributions of social network users are firstly obtained using a topic model and then topic groups of interests for each user are extracted for further similarity-based feature extractions. The proposed topical features exhibit comparable performance of structural features and is efficiently combined with structural features to achieve better results in link predictions. Experimental results based on the dataset collected from Sina Microblog show that independent prediction of topical features is better than that of structural features and the F-measure of structural features is improved by up to 3% with joint predictions.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2016年第8期103-109,共7页 Journal of Xi'an Jiaotong University
基金 国家重点基础研究发展计划资助项目(2013cb329600) 国家自然科学基金资助项目(61372191 61572492 61472433)
关键词 链路预测 用户内容 主题模型 相似性特征 link prediction user generated content topic model feature similarity
  • 相关文献

参考文献2

二级参考文献82

  • 1GETOOR L,DIEHL C P.Link mining:a survey[J].ACM SIGKDD Explorations Newsletter,2005,7(2):3-12. 被引量:1
  • 2SARUKKAI R R.Link prediction and path analysis using markov chains[J].Computer Networks,2000,33(1-6):377-386. 被引量:1
  • 3ZHU J,HONG J,HUGHES J G Using markov chains for link prediction in adaptive web sites[J].Lect Notes Comput Sci,2002,2311:60-73. 被引量:1
  • 4POPESCUL A,UNGAR L.Statistical relational learning for link prediction[C] //Proceedings of the Workshop on Learning Statistical Models from Relational Data.New York:ACM Press,2003:81-87. 被引量:1
  • 5O'MADADHAIN J,HUTCHINS J,SMYTH P.Prediction and ranking algorithms for event-based network data[C] //Proceedings of the ACM SIGKDD 2005.New York:ACM Press,2005:23-30. 被引量:1
  • 6LIN D.An information-theoretic definition of similarity[C] //Proceedings of the 15th Intl Conf Mach.Learn..San Francisco,Morgan Kaufman Publishers,1998:296-304. 被引量:1
  • 7LIBEN-NOWELL D,KLEINBERG J.The link-prediction problem for social networks[J].J Am Soc Inform Sci Technol,2007,58(7):1019-1031. 被引量:1
  • 8CLAUSET A,MOORE C,NEWMAN M E J.Hierarchical structure and the prediction of missing links in networks[J].Nature,2008,453:98-101. 被引量:1
  • 9HOLLAND P W,LASKEY K B,LEINHARD S.Stochastic blockmodels:First steps[J].Social Networks,1983,5:109-137. 被引量:1
  • 10GUIMERA R,SALES-PARDO M.Missing and spurious interactions and the reconstruction of complex networks[J].Proc Natl Sci Acad USA,2009,106(52):22073-22078. 被引量:1

共引文献246

同被引文献45

引证文献4

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部