期刊文献+

紫外分光光度-局部偏最小二乘回归法同时测定三种人造甜味剂 被引量:4

Simultaneous Determination of Three Artificial Sweeteners Using UV Spectroscopic Combined with Local Partial Least Squares Regression Method
原文传递
导出
摘要 本文报道了一种简便、快速、准确地同时测定3种人造甜味剂安赛蜜、阿斯巴甜和糖精钠的方法。方法基于在p H为3.21的盐酸溶液中对安赛蜜、阿斯巴甜和糖精钠三组分混合溶液进行紫外光度测定,所得重叠光谱数据分别用偏最小二乘回归法(PLSR)、特征峰结合PLSR法和特征峰结合局部偏最小二乘回归法(LPLSR)进行处理。结果表明,选取特征波段的峰值作为自变量,采用4个局部样本做拟合的预报误差最小,总相对偏差仅为3.05%。对果汁样品进行测定,获得了很好的定量分析结果。安赛蜜、阿斯巴甜和糖精钠的定量线性范围分别为1.0~30.0 mg/L、1.0~10.0 mg/L和1.0~10.0 mg/L。 Acesulfame-K,aspartame and saccharin sodium are commonly used as food flavoring agents. All of them show strong absorptions in the UV spectral region which are seriously overlapped. This paper reports simultaneous determination of them using UV spectroscopic combined with chemometric methods. Firstly,partial least squares regression( PLSR) was used,the total relative deviation was 7. 01%. Secondly,PLSR combined with the characteristic peaks were employed,the total relative deviation was 4. 67%. Lastly,local partial least squares regression( LPLSR) combined with the characteristic peaks were employed for the design of a model. The characteristic peaks of UV spectra of calibrating samples were chose as the independent variable factor,and LPLSR was used in data processing. Compared with PLSR method,the total relative deviation of LPLSR method is smaller,which is only 3. 05%. Finally,the model was used to the concentration prediction of beverage samples with satisfactory results. The linear range of acesulfame-K,aspartame and saccharin sodium is 1. 0 ~ 30. 0 mg / L,1. 0 ~10. 0 mg / L and 1. 0 ~ 10. 0 mg / L respctively.
出处 《化学通报》 CAS CSCD 北大核心 2016年第8期744-748,共5页 Chemistry
基金 质检公益性行业科研专项(201410173) 国家自然科学基金项目(71433006 61373058)资助
关键词 紫外分光光度法 安赛蜜 阿斯巴甜 糖精钠 局部偏最小二乘回归法 UV spectroscopic Acesulfame-K Aspartame Saccharin sodium Local partial least square regression
  • 相关文献

参考文献24

  • 1J M Schlatter. USP: 3492131, 1970. 被引量:1
  • 2A Zygler, A Wasik, J Namlesnik. Trend. Anal. Chem., 2009, 28(9) : 1082 - 1102. 被引量:1
  • 3K Clauss, H Jensen. Angew. Chem. Int. Ed., 1973, 12 (11): 869 -876. 被引量:1
  • 4L Zhao, B Tepper. Food Qual. Prefer., 2007, 18 (3): 531 -540. 被引量:1
  • 5M Soffritti, F Belpoggi, D D Esposti et al. Environ. Health Perspect. , 2006, 114(3) : 379 -385. 被引量:1
  • 6M Soffritti, F Belpoggi, E Tibaldi et al. Environ. HealthPerspect. , 2007, 115(9) : 1293 - 1297. 被引量:1
  • 7D J Ager, D P Pantaleone, S A Henderson et al. Angew. Chem. Int. Ed., 1998, 37(13-14): 1802-1817. 被引量:1
  • 8M Grembecka, P Baran, A Btazewicz et al. Eur. Food Res. Technol. , 2014, 238(3) : 357 -365. 被引量:1
  • 9D Queiroz Pane, C B Dias, A D Meinhart et al. J. Food Sci. Technol. , 2015, 5201): 6900-6913. 被引量:1
  • 10H S Lira, S K Park, I S Kwak et al. Food Sci. Biotechnol. , 2013, 22(S1) : 233 -240. 被引量:1

二级参考文献23

  • 1冯芳,马勇健,喻咏梅,张正行.反相HPLC法同时测定饮料中的两种人造甜味剂[J].卫生研究,1994,23(3):164-167. 被引量:2
  • 2宋远志,范忠群.食品中糖精钠的导数光谱分析[J].卫生研究,1996,25(2):123-124. 被引量:4
  • 3唐岩 管境 张廷雨.蛋白糖中糖精钠的测定[J].中国公共卫生,1994,10(4):181-182. 被引量:2
  • 4Vapnik V. The nature of statistical learning theory[M]. New York: Springer Verlag, 1995: 138-146. 被引量:1
  • 5Xiaoming Wang, Fu-lai Chung, Shitong Wang. On minimum class locality preserving variance support vector machine[J]. Pattern Recognition, 2010, 43(1): 2753-2762. 被引量:1
  • 6Haixian Wang, Sibao Chen, Zilan Hu, et al. Locality- preserved maximum information projection[J]. IEEE Trans on Neural Networks, 2008, 19(4): 571-585. 被引量:1
  • 7Liu Q, Tang X, Lu H, et al. Face recognition using kernel scatter-difference-based discriminant analysis[J]. IEEE Trans on Neural Network, 2006, 17(4): 1081-1085. 被引量:1
  • 8Shivaswamy P, Jebara T. Maximum relative margin and data-dependent regularization[J]. J of Machine Learning Research, 2010, 1 I(1): 747-788. 被引量:1
  • 9Zafeiriou S, Tefas A, Pitas I. Minimum class variance support vector machines[J]. IEEE Trans on Image Processing, 2007, 16(10): 2551-2564. 被引量:1
  • 10Li H, Jiang T, Zhang K. Efficient and robust feature extraction by maximum margin criterion[J]. IEEE Trans on Neural Networks, 2006, 17(1): 157-165. 被引量:1

共引文献8

同被引文献46

引证文献4

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部