期刊文献+

基于过采样投影近似基追踪的无人机异常检测 被引量:9

UAV anomaly detection based on oversampling projection approximation basis pursuit
下载PDF
导出
摘要 针对无人机飞行模式切换导致飞行数据在线异常检测准确率低的问题,提出基于过采样投影近似基追踪(OSPABP)的在线异常检测框架。首先利用滑窗和Z-score变换消除飞行数据流量纲,并抽取相关的飞行数据子集;然后过采样当前时刻子集的输入数据,放大异常数据对数据子空间的影响,并通过在线估计和追踪匹配过采样后数据子空间的投影近似基方向变化,从而判断子集实时输入数据的异常程度。同时该方法还可抑制飞行模式切换对异常检测效果的影响。采用Flight Gear模拟飞行数据和明尼苏达大学真实无人机飞行数据的实验结果表明,所提出方法对飞行模式切换敏感度低,可明显降低异常检测的误检率,并有效提高检测准确率。此外,算法的计算和存储复杂度均可满足机载处理要求。 Aiming at the low accuracy problem of flight data online anomaly detection caused by flight mode switching of UAV,an online anomaly detection method is proposed based on Over Sampling Projection Approximation Basis Pursuit( OSPABP). Firstly, the dimension of flight data stream is eliminated with sliding window and Z-score transformation,and correlated flight data subset is extracted from sliding window. Secondly,the multivariate data of the subset in current time is oversampled to amplify the influence of abnormal data on data subspace. Through online estimation and pursuing match of the direction change of the projection approximation basis of the data subspace after oversampling,the anomaly of the real time input data of the subset is determined. Meanwhile,the method can also suppress the influence of flight mode switching on anomaly detection result. The experiments on the simulated flight data from Flight Gear and the real UAV flight data from University of Minnesota were conducted; the experiment results show that the proposed OSPABP method can reduce the false positive rate of anomaly detection significantly and improve the accuracy of anomaly detection effectively as its sensitivity to flight mode switching is low. In addition,the computational and storage complexity of the OSPABP method meets the requirement of flight data real-time processing.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2016年第7期1468-1476,共9页 Chinese Journal of Scientific Instrument
基金 国家自然科学基金(61571160) 部委重点基金课题(9140A17050114HT01054)项目资助
关键词 无人机 在线异常检测 数据流 过采样 投影近似基 unmanned aerial vehicle(UAV) online anomaly detection data stream oversampling projection approximation basis
  • 相关文献

参考文献20

  • 1QI x, THEILLIOL D, QI J, et al. A literature review on fault diagnosis methods for manned and unmanned helicopters[ C]. 2013 IEEE International Conference on Unmanned Aircraft Systems, 2013: 1114-1118. 被引量:1
  • 2ALJANAIDEH K F, BERNESTEIN D S. Aircraft sensor health monitoring based on transmissibility operators[ J ]. Journal of Guidance, Control, and Dynamics, 2015, 38(8) : 1492-1495. 被引量:1
  • 3CHAMSEDDINE A, AMOOZGAR M H, ZHANG Y M. Experimental validation of fault detection and diagnosis for unmanned aerial vehicles [ C ]. Handbook of Unmanned Aerial Vehicles. Berlin : Springer Netherlands, 2015 : 1123-1155. 被引量:1
  • 4FREEMAN P, PANDITA R, SRIVASTAVA N, et al. Model-based and data-driven fault detection performance for a small UAV [ J ]. IEEE/ASME Transactions on Mechatronics, 2013, 18(4) : 1300-1309. 被引量:1
  • 5CHANDOLA V, BANERJEE A, KUMAR V. Anomaly detection: A survey[ J]. ACM computing surveys, 2009, 41(3) : 1-58. 被引量:1
  • 6PAN D W, LIU D T, ZHOU J, et al. Anomaly detection for satellite power subsystem with associated rules based on Kernel principal component analysis [ J ]. Microelectronics Reliability, 2015, 55 ( 9 ) : 2082-2086. 被引量:1
  • 7SCHUMANN J M, ROZIER K Y, REINBACHER T, et al. Towards real-time, on-board, hardware-supported sensor and software health management for unmanned aerial systems [ J ]. International Journal of Prognostics and Health Management, 2015, 6( 1 ) ) : 1-27. 被引量:1
  • 8KHALASTCHI E, KALECH M, KAMINKA G A, et al. Online data-driven anomaly detection in autonomous robots[ J]. Knowledge and Information Systems, 2015, 43 ( 3 ) : 657-688. 被引量:1
  • 9FREEMAN P, BALAS G J. Analytical fault detection for a small UAV[ C]. A1AA Infoteeh Aerospace Conference, 2013 : 541-546. 被引量:1
  • 10HANSEN S, BLANKE M, ADRIAN J. Diagnosis of UAV pitot tube defects using statistical change detection [ C ]. Proceedings of the 7th IFAC Symposium on Intelligent Autonomous Vehicles, Lecce, Italy,2010. 被引量:1

二级参考文献69

  • 1李巍华,史铁林,杨叔子.基于非线性判别分析的故障分类方法研究[J].振动工程学报,2005,18(2):133-138. 被引量:13
  • 2邓云凯,王宇,杨贤林,张志敏.基于对比度最优准则的自聚焦优化算法研究[J].电子学报,2006,34(9):1742-1744. 被引量:8
  • 3程皓,郭伟.相关矩阵相乘构造子空间方法[J].电子测量与仪器学报,2007,21(3):28-32. 被引量:1
  • 4Calloway T M,Donohoe G W.Subaperture autofocus for synthetic aperture radar[J].IEEE Trans on Aerospace and Electronic Systems,1994,30(2):6l7-621. 被引量:1
  • 5Piotr S,Krzysztof S K.Coherent mapdrift technique[J].IEEE Trans on Geoscience and Remote Sensing,2010,48(3):1505-1517. 被引量:1
  • 6Snarski C A.Rank one phase error estimation for range-Doppler imaging[J].IEEE Trans on Aerospace and Electronic Systems,1996,32(2):676-688. 被引量:1
  • 7Ye Wei,Yeo T S,et al.Weighted least-squares estimation of phase errors for SAR/ISAR autofocus[J].IEEE Trans on Geoscience and Remote Sensing,1999,37(5):2487-2494. 被引量:1
  • 8Li Lian-lin,Zhang Wen-ji,et al.A novel autofocusing approach for real-time through-wall imaging under unknown wall characteristics[J].IEEE Trans on Geoscience and Remote Sensing,2010,48(1):423-431. 被引量:1
  • 9Cao Pan,Xing Meng-dao,et al.Minimum entropy via subspace for ISAR autofocus .IEEE Trans on Geoscience and Remote Sensing Letters,2010,7(1):205-209. 被引量:1
  • 10Wahl D E,Eichel P H,et al.Phase gradient autofocus-a robust tool for high resolution SAR phase correction[J].IEEE Trans on Aerospace and Electronics Systems,1994,30(3):827-835. 被引量:1

共引文献35

同被引文献86

引证文献9

二级引证文献106

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部