期刊文献+

移动边缘计算促进5G发展的分析 被引量:29

Analysis of Mobile Edge Computing Promoting 5G Development
下载PDF
导出
摘要 在可预见的未来5G网络数据量激增的背景下,为了满足更高带宽、更低时延等用户体验,移动边缘计算(MEC)技术正在引起业界相当多的重视。结合5G网络发展趋势分析了MEC的关键技术及其对5G的促进作用,就MEC的典型应用场景进行了举例说明,并给出了从4G到5G网络的MEC平滑过渡部署建议。 With the foreseen exponential growth of data in the future 5G network,to satisfy the quality of user experience such as higher bandwidth and lower latency,the technology of mobile edge computing(MEC)is gaining considerable attention in the indus-try. The key technologies of MEC as wel as its promotion on 5G are analyzed combined with 5G network development trends. Typical use cases of MEC are described by examples. Besides,the deployment suggestions of MEC are presented for smooth transition from 4G to 5G network.
出处 《邮电设计技术》 2016年第7期4-8,共5页 Designing Techniques of Posts and Telecommunications
关键词 5G 移动边缘计算 内容感知 跨层优化 C/U平面分离 5G Mobile edge computing Content awareness Cross-layer optimization C-plan/U-plan split
  • 相关文献

参考文献8

  • 15G愿景与需求(白皮书)[EB/OL].[2016-01-26].http://www.docin.com/p-890406206.html. 被引量:2
  • 2NGMN 5G White Paper [ EB/OL ]. [ 2016-04-26 ]. http ://www.ngmn. org/Sg-white-paper.html. 被引量:1
  • 3Mobile Edge Computing - A Key Technology Towards 5G [ EB/OL]. [2016-04-26]. http ://www.etsi.org/technologies- clusters/technolo- gies/mobile-edge-computing. 被引量:1
  • 4边凌燕,贺仁龙,姚晓辉.基于DPI数据挖掘实现URL分类挂载的相关技术研究[J].电信科学,2013,29(11):6-11. 被引量:4
  • 5DHARMAPURIKAR S, KRISHNAMURTHY P, SPROULL T S, et al. Deep packet inspection using parallel Bloom filters [C]// High PERFORMANCE Interconnects, 2003. Proceedings. Symposium on. 2003 : 52-61. 被引量:1
  • 6FOUKALAS F, GAZIS V, ALONISTIOTI N. Cross-layer design pro- posals for wireless mobile networks: A survey and taxonomy [J]. IEEE Communications Surveys & Tutorials, 2008,10( 1 ): 70-85. 被引量:1
  • 73GPP R3-160827 : Use Cases of Context Aware Service Delivery [ EB/ OL]. [2016- 04- 26]. http://www.3gpp.org/ftp/TSG_RAN/WG3_Iu/ TSGR3_91 bis/Docs/. 被引量:1
  • 8CHIBA T, ITO M, YOKOTA H, et al. Implementation and evaluation of local breakout method for IP-based femtocell networks [C]// Inter- national Conference on Advanced Technologies for Communications, IEEE, 2010: 249 - 254. 被引量:1

二级参考文献12

  • 1薛为民,陆玉昌.文本挖掘技术研究[J].北京联合大学学报,2005,19(4):59-63. 被引量:63
  • 2李原.中文文本分类中分词和特征选择方法研究.吉林大学硕士学位论文.2011. 被引量:1
  • 3Liu H, Motoda H. Feature Extraction, Construction and Selection: A Data Mining Perspective. USA: Kluwer Academic,1998. 被引量:1
  • 4Jain A, Zongker D. Feature selection: evaluation, application and small sample performance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(2):153-158. 被引量:1
  • 5Gorvan A. Principal Manifolds for Data Visualisation and Dimension Reduction. New York: Springer, 2007. 被引量:1
  • 6Verleysen M, Lee J A. Rank-based quality assessment of nonlinear dimensionality reduction. Proceedings of the 16th European Symposium on Artificial Neural Networks, Bruges, Belgium, 2008:49-54. 被引量:1
  • 7Deerwester S. Indexing by latent semantic analysis. Journal of American Society for Information Science,1990,41(6):391-407. 被引量:1
  • 8Vapnik V N, The Nature of Statistical Learning Theory. New York: Springer, 1995. 被引量:1
  • 9Joachims T. Text categorization with support vector machines: Learning with many relevant features. Proceedings of the 10th European Conference on Machine Learning, Chemnitz, Germany, 1998:137-142. 被引量:1
  • 10Joachims T, Transduetive inference for text classification using support vector machines. Proceedings of the 16th International Conference on Machine Learning, Bled, Slovenia, 1999: 200- 209. 被引量:1

共引文献4

同被引文献94

引证文献29

二级引证文献242

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部