期刊文献+

雷诺数效应对翼型抖振特性的影响 被引量:2

On the Influence of Reynolds Number on Airfoil Buffet Characteristics
原文传递
导出
摘要 飞行器抖振是一种非线性气动弹性问题,当飞行器进入抖振阶段时,将会对飞行器的性能产生严重影响。而在跨声速条件下,激波附面层相互作用会诱导机翼抖振。本文开展了跨声速条件下翼型抖振特性雷诺数效应的实验研究,揭示了翼型跨声速抖振起始迎角、激波运动前缘边界、频谱特性、抖振频率与雷诺数变化的基本规律。结论如下:雷诺数变化会导致抖振起始边界的改变,对抖振起始迎角下的功率谱密度峰值有明显影响;随着雷诺数的增大,激波运动的前缘后移。雷诺数变化对抖振频率有明显影响,随着马赫数增大,雷诺数效应增强。 Aircraft buffeting is a kind of nonlinear aeroelastic issue.Maneuver ability of aircraft will be extremely affected when aircraft buffeting appears.Under transonic condition,the interaction of shock wave boundary-layers may induce wing buffeting.In this paper,an experimental investigation on the effect of Reynolds number on airfoil buffet characteristics was carried out under transonic-flow condition to reveal the influence of Reynolds number on the buffet onset angle of attack,the leading edge of shock movement,the frequency spectrum characteristics and the buffet frequency.Results show that the variation of Reynolds number may lead to the change of buffeting initial boundary,and produce significant effect on power spectral density peak value at the initial angle of attack.Along with the increase of Reynolds number,the attack angle of buffet onset changes slightly,the peak value of power spectral density varies significantly,and the leading edge of moving shock moves backward.The effect of Reynolds number on the buffet frequency is obvious.Along with the increase of Mach number,the effect of Reynolds number becomes larger.
出处 《实验力学》 CSCD 北大核心 2016年第3期386-392,共7页 Journal of Experimental Mechanics
基金 总装重点实验室基金(9140C420301110C42)资助
关键词 雷诺数效应 抖振边界 激波运动前缘 抖振起始迎角 频谱特性 Reynolds number effect buffet boundary leading edge of shock movement buffet onset angle of attack frequency spectrum characteristics
  • 相关文献

参考文献19

  • 1Zan S J, Maull D J. Buffet excitation of wings at low speeds[J]. Journal of Aircraft, 1992, 29(6) :1137-1143. 被引量:1
  • 2Flynn G A,Morrison J F,Mabey D G. Buffet alleliation on an unswept wing at high incidence[C], AIAA-99-0791, 1999. 被引量:1
  • 3Humphreys M D. Pressure pulsation on rigid airfoil at transonic speeds, NACA RM L51I12[R]. Washington,D.C. : NACA, 1951. 被引量:1
  • 4McDevitt J B,Levy Jr L L, Deiwert G S. Transonic flow about a thick circar-arc airfoil [J]. AIAA Journal,1976,14:606-613. 被引量:1
  • 5McDevitt J B. Supercritical flow about a thick circular-arc airfoil [R]. NASA TM 78549 , National Aeronauticsand Space Administration, January 1979. 被引量:1
  • 6Mabey D G. Oscillatory flows from shock-induced separations on biconvex airfoils of varying thickness inventilated wind tunnels [R]. AGARD CP-296, Boundary layer effects on unsteady air loads, Aix-en-Provence,France, September 1980. 被引量:1
  • 7Mabey D G,Welsh B L,Cripps B E. Periodic flows on a rigid 14% thick biconvex wing at transonic speeds [R].TR 81059, Royal Aircraft Establishment,May 1981. 被引量:1
  • 8Mabey D G. Some remarks on buffeting in unsteady airloads and aeroelastic problems in separated and transonic?lows[R]. VKI Lecture Series, April 1981. 被引量:1
  • 9Boyden R P. Preliminary results of buffet tests in a cryogenic tunnel[R]. NASA TM 81923,July 1981. 被引量:1
  • 10Edwards J W. Transonic show oscillations calculated with a new interactive boundary layer coupling method,AIAA-1993-0777[R]. Reston: AIAA, 1993. 被引量:1

同被引文献39

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部