期刊文献+

一种面向移动无线信道的混沌交织算法 被引量:1

A novel chaotic interleaving algorithm for mobile wireless channels
下载PDF
导出
摘要 交织是抵抗移动无线衰落信道突发差错的有效技术。为了抵抗二维突发差错,提出了一种新的基于Baker映射的混沌交织算法。该算法首先将二进制信源序列转化为数据矩阵,再使用混沌Baker映射方法将其随机离散化,从而实现二维长突发差错在解交织后变为一维短突发差错。再者,将该算法和基于Viterbi解码的卷积码联合使用,分别应用于(2,1,3)和(2,1,7)两种卷积码场景下进行性能比较。仿真结果显示,当移动信道传输图像画面时,该算法相比传统方案具有显著优势;该算法的抗衰落性能随着分组长度的增加而更加优越,并且有效降低了算法复杂度;该算法通过使用不同的密钥能够增强每个传输分组的安全性。 Interleaving technique is an efficient technique to resist serious burst errors over mobile wireless fading channels. To resist 2 dimensionality burst errors effectively, a novel chaotic interleaving algorithm based on Baker map was proposed. In the proposed scheme, the hinary source sequence was converted to the data matrix, and then the data matrix was dispersed randomly by using the chaotic Baker map approach, in order to realize the function of transforming 2 dimensionality long bust error into the short 1 dimensionality short bust error after de-interleaving. In additional, tire proposed algorithm was combined with the convolution code based on Viterbi decoding, and was applied into the scenario of eonvolutional codes (2,1,3) and the scenario of (2,1,7) separately for a performance comparison. The simulation results show that the performance of the proposed algorithm outperforms better than the traditiCmal algorithms under image transmission over mobile wireless channel. Moreover, the anti-fading capability of the proposed algorithm grows as the packet length increases, while reducing the complexity significantly. Finally, the chaotic interleaver can also enhance every, transmitted packer's security with different secret keys.
作者 王先平 曹卉
出处 《电信科学》 北大核心 2016年第7期40-44,共5页 Telecommunications Science
基金 河南省科技厅项目"基于云存储的河南省终身教育海量数字化资源公共服务基础平台建模研究"(No.152102210304) 河南省教育厅项目"面向河南省社区远程教育的海量数字化教学资源存储管理研究"(No.ZJA15172)~~
关键词 卷积码 混沌交织器 无线信道 移动性 convolutional code, chaotic interleaving, wireless channel, mobility
  • 相关文献

参考文献8

二级参考文献58

共引文献10

同被引文献1

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部