期刊文献+

大数据研究领域中科研机构影响力测度研究 被引量:5

Research on the Influence of Scientific Institutions in the Field of Big Data Research
下载PDF
导出
摘要 [目的/意义]以Web of Science数据库中核心期刊论文为信息来源,评价了科研机构在大数据研究领域中的影响力,有利于决策者评估科研差距、制定发展计划。[方法/过程]首先,综合考虑多项评价指标,并且依据其属性和相互间的相关关系将其分组处理,避免指标间的相互干扰。其次,依据熵权原理,提出基于熵权的TOPSIS影响力的评价模型,将其运用到对大数据研究领域中科研机构影响力评价中,避免了主观因素的干扰。最后,通过Spearman秩相关性检验了评价指标与综合排名的一致性以及评价指标分组的科学性。[结果 /结论]研究发现Chinese Acad Sci、Harvard Univ、Univ So Calif三个科研机构综合得分最高,最具影响力。评价指标介数中心性在评价环节中作用最强,而发文量最弱。 [Purpose/Significance] This article selects the core journal articles in Web of Science database as a source of information, and evaluates the influence of scientific institutions in the field of big data research. This study is advantageous to the decision makers to evalu-ate the scientific research gap and make development plan. [ Method/Process] Firstly, the authors consider a number of evaluation inde-xes, and then furthermore group the indexes in accordance with the property and the mutual relations to avoid the mutual interference be-tween the indicators. Secondly, according to the principle of entropy, the authors propose a TOPSIS academic influence evaluation model based on entropy weight method to avoid the interference of subjective factors. Then they evaluate the influence of scientific institutions in the field of big data research through this model. Finally, the authors test consistency between the evaluation index and the comprehensive ranking as well as the reasonability of the group for the evaluation indexes by Spearman rank correlation test. [ Result/ Conclusion] The results show that three scientific research institution, including Chinese Acad Sci, Harvard Univ and Univ So Cali, have the highest scores and the most academic influence. The closeness centrality has the strongest effect, while the paper quantity has the weakest effect among the evaluation indexes.
出处 《情报杂志》 CSSCI 北大核心 2016年第7期179-184,125,共7页 Journal of Intelligence
基金 重庆市社会科学规划项目"‘一带一路’背景下重庆市的创新驱动路径分析及对策研究--以大数据领域为例"(编号:2015YBGL113) 重庆市教委科学技术研究项目"复杂创新网络视角下的大数据领域成长战略 创新机制 发展动力研究"(编号:KJ1500334) 重庆师范大学基金项目"基于社会网络分析的大数据领域成长路径辨识与产业发展对策研究"(编号:14XWB016)的阶段性成果
关键词 大数据 学术影响力 熵权 TOPSIS分析法 big data academic influence entropy weight TOPSIS analysis
  • 相关文献

参考文献26

二级参考文献188

共引文献400

同被引文献93

引证文献5

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部