期刊文献+

内孤立波破碎所致混合的实验研究 被引量:8

AN EXPERIMENTAL STUDY ON MIXING INDUCED BY INTERNAL SOLITARY WAVE BREAKING
下载PDF
导出
摘要 为定量分析内孤立波破碎的混合过程,本文在二维内波水槽中进行了两层流体第一模态内孤立波在斜坡上破碎的实验,运用粒子图像测速技术(PIV)测量内孤立波传播、破碎、反射过程的流场,计算涡度、湍动能和湍耗散率。结果表明不同振幅内波在不同角度斜坡上破碎时各个量的分布特征十分相似,各组实验各要素时间序列中均有两个峰值,分别发生于非线性增强和破碎时刻。得到破碎时湍耗散率与内孤立波振幅的关系为:较小振幅内波的湍耗散率与振幅呈2次关系,无因次振幅增大到0.9湍耗散率趋于不变;与斜坡角度的关系为:对于小振幅内波斜坡角度增大,破碎程度降低,耗散率减小;振幅较大时,存在一个角度使破碎程度最大。破碎引起的湍耗散率的量级在10–7到10–4m2/s3之间,比实测海洋中内孤立波传播界面和内潮遇地形破碎的湍耗散大1个量级。 To understand the mixing that induced by internal solitary wave (ISW) breaking quantitatively, we conducted a 2-dimensional experiment on ISW in an internal wave tank in different amplitudes and slopes. Particle Image Velocimetry (PIV) was employed to visualize the velocity field of ISW during propagating, breaking, and reflecting. Vorticity, dissipation rate c, and turbulence kinetic energy (TKE) were calculated. Results show in overall similar features among these parameters in different amplitudes a and slopes, showing two peaks in maximum square vorticity, TKE, and time series. The first peak appeared when nonlinearity boosting and the second at the breaking. We obtained ε∝α2 for ISW of relatively small amplitude, and for large amplitude ISW, e increased slowly and stayed at a certain point. For incident wave of ISW of relatively small amplitude, a larger slope lead to weaker breaking and smaller e, while for that of large amplitude there occurred a slope at which most intense breaking took place. The dissipation rate measured ranged 10-7-10-4m2/s3, which is a magnitude larger than turbulence dissipation rate measured in real oceanic ISW interface and internal tide breaking.
出处 《海洋与湖沼》 CAS CSCD 北大核心 2016年第3期533-539,共7页 Oceanologia Et Limnologia Sinica
基金 国家自然科学基金项目 41476001号 GLOD开放课题项目 GLOD1402号 中国海洋大学基本科研业务项目 201362011号
关键词 内孤立波破碎 PIV湍耗散 涡度 湍动能 internal wave breaking PIV turbulent dissipation vorticity turbulence kinetic energy
  • 相关文献

参考文献4

二级参考文献88

  • 1李家春.水面下的波浪——海洋内波[J].力学与实践,2005,27(2):1-6. 被引量:50
  • 2李丙瑞,田纪伟,范海梅,刘志亮,赵骞.层结海洋中小振幅内行进波的演变和破碎[J].地球物理学报,2006,49(2):360-366. 被引量:3
  • 3Benielli D, Sommeria J, 1996. Excitation of internal waves and stratified turbulence by parameteric instability. Dyn Atmos Oceans, 23:335-343. 被引量:1
  • 4Bouruet-Aubertot P, Sommeria J, Staquet C, 1995. Breaking of standing internal gravity waves through two-dimensional in- stabilities. J Fluid Mech, 285:265-301. 被引量:1
  • 5Bouruet-Aubertot P, Sommeria J, Staquet C, 1996. Stratified turbulence produced by internal wave breaking:two-dimensional numerical experiments. Dyn Atmos Oceans, 23:357-369. 被引量:1
  • 6Bouruet-Aubertot P, Koudella C R, Staquet C et al, 2001. Parti- cle dispersion and mixing induced by breaking internal gravity waves. Dyn Atmos Oceans, 33:95-134. 被引量:1
  • 7Canuto C, Hussaini M Y, Quateroni A et al, 1988. Spectral methods in fluid dynamics. Springer Series in Computa- tional Physics. Springer, Berlin, 36-66. 被引量:1
  • 8Drazin P G, 1977. On the instability of an internal gravity wave. Proc R Soc London, Seri A, 356:411-432. 被引量:1
  • 9Gargett A E, Merryfield W J, Holloway G, 2003. Direct Numerical Simulation of Differential Scalar Diffusion in Three-Dimensional Stratified Turbulence. J Phys Oceanogr, 33:1758-1782. 被引量:1
  • 10Holloway G, 1988. The buoyancy flux from internal gravity wave breaking. Dyn Atmos Oceans, 12:107-125. 被引量:1

共引文献10

同被引文献221

引证文献8

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部