期刊文献+

一类差分方程的亚纯解与亚纯函数分担3个值的唯一性 被引量:2

Unicity for Meromorphic Solutions of Some Difference Equations Sharing Three Values with Any Meromorphic Functions
下载PDF
导出
摘要 利用亚纯函数的Nevanlinna值分布理论和分类讨论的思想方法,研究了差分方程a1(z)f(z+1)+a0(z)f(z)=0的有穷级亚纯解f(z)与任一亚纯函数g(z)分担0,1,∞CM时的唯一性问题,得到f(z)≡g(z)或者f(z)g(z)≡1,其中a1(z)和a0(z)是非零多项式且满足a1(z)+a0(z)0. By utilizing Nevanlinna's value distribution theory of meromorphic functions and categorized discussion method, the uniqueness of a finite-order meromorphic solution f(z) of the difference equation a1(z)f(z + 1 ) +a0 (z)f(z) = 0 sharing 0, 1, ∞CM with any meromorphic function g(z) is investigated, and the result is given that f(z) ≡g (z) or f(z) g (z) ≡ 1 under the above condition, where a1(z) and a0 (z) are nonzero polynomials satisfying a1(z) + a0(Z)≠0.
作者 崔宁 陈宗煊
出处 《华南师范大学学报(自然科学版)》 CAS 北大核心 2016年第4期83-87,共5页 Journal of South China Normal University(Natural Science Edition)
基金 国家自然科学基金项目(11171119) 广东省自然科学基金项目(2014A030313422)
关键词 亚纯函数 差分方程 分担值 唯一性 meromorphic function difference equation shared values uniqueness
  • 相关文献

参考文献15

  • 1杨乐著..值分布论及其新研究[M].北京:科学出版社,1982:330.
  • 2HAYMAN W K. Meromorphic functions [ M ] . Oxford:Clarendon Press, 1964. 被引量:1
  • 3仪洪勋,杨重骏著..亚纯函数唯一性理论[M].北京:科学出版社,1995:625.
  • 4YANG L Z. Meromorphic functions that share two values[J ]. Journal of Mathematical Analysis and Applications,1997,209:542-550. 被引量:1
  • 5YI H X. Meromorphic functions with two deficient values[J] . Acta Mathematica Sinica, 1987, 30(5) :588-597. 被引量:1
  • 6LI P, YANG C C. Uniqueness theorems on entire func-tions and their derivatives [ J ]. Journal of Mathematical A-nalysis and Applications, 2001, 253 : 50-57. 被引量:1
  • 7FANG M L. Unicity theorems for algebroid functions[ J].Acta Mathematica Sinica, 1993,36:217-222. 被引量:1
  • 8陈宗煊,黄志波.复域差分和差分方程的研究[J].华南师范大学学报(自然科学版),2013,45(6):26-33. 被引量:10
  • 9彭长文,陈宗煊.一类高阶差分方程亚纯解的性质[J].华南师范大学学报(自然科学版),2014,46(3):25-29. 被引量:2
  • 10CHEN Z X, YI H X. On sharing values of meromorphicfunctions and their differences[ J]. Results in Mathemat-ics, 2013,63:557-565. 被引量:1

二级参考文献17

  • 1SHON Kwang Ho.Estimates for the zeros of differences of meromorphic functions[J].Science China Mathematics,2009,52(11):2447-2458. 被引量:18
  • 2Hayman W K. Meromorphic functions[M] . Oxford: Clarendon Press, 1964. 被引量:1
  • 3Halburd R G, Korhonen RJ. Difference analogue of the lemma on the logarithmic derivative with applications to difference equations[J].Journal of Mathematical Analysis and Applications, 2006,314 ( 2) : 477 - 487 . 被引量:1
  • 4Laine I, Yang C C. Clunie theorems for difference and qdifference polynomials[J].Journal of the London Mathematical Society ,2007, 76( 2) :556 - 566. 被引量:1
  • 5Chen Z X. On properties of meromorphic solutions for some difference equations[J]. Kodai MathematicalJournal, 2011 ,34: 244 -256. 被引量:1
  • 6Chen Z X. Growth and zeros of meromorphic solutiori of some linear difference equations[J] .Journal of Mathematical Analysis and Applications, 2011,373 ( I ): 235 - 241. 被引量:1
  • 7Peng C W, Chen Z X. On a conjecture concerning some nonlinear difference equations[J]. Bulletin of the Malaysian Mathematical Sciences Society, 2013, 36 (2): 221 -227. 被引量:1
  • 8Chiang Y M, Feng SJ. On the Nevanlinna characteristic of f( z + TJ) and difference equations in the complex plane[J]. The RamanujanJournal ,2008, 16( I): 105 - 129. 被引量:1
  • 9Chen Z X. The zero, pole and order of meromorphic solutions of differential equations with meromorphic coefficients[J]. Kodai MathematicalJournal, 1996, 19: 341 -354. 被引量:1
  • 10Gundersen G. Finite order solutions of second order linear . differential equations[J]. Transactions of the American Mathematical Society, 1988,305: 415 -429. 被引量:1

共引文献9

同被引文献5

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部