期刊文献+

基于星型模型与多条件随机场的人体行为识别

Human Action Recognition Based on Star Model and Multiple CRF Ensemble Model
原文传递
导出
摘要 为提高人体行为识别的实时性与准确性,提出一种基于星型模型与多条件随机场(Multiple Conditional RandomFields,MCRF)相结合的行为识别方法。首先,利用混合高斯模型进行背景建模,提取人体目标,建立人体星型模型。其次,通过建立人体坐标系,确定星型模型中各关键点的坐标提取距离、速度、角度、轨迹特征,并对每一特征集进行条件随机场建模,联合4类条件随机场模型建立多条件随机场模型,进行人体行为的识别。通过在KTH人体行为数据库上进行测试,结果证明,此方法能实时、准确的进行人体行为识别。 In order to improve instantaneity and accuracy of action recognition, a combined method based on star model and multiple CRF ensemble model is proposed. After extracting human target by Gaussian Mixture Model(GMM) ,Which establish a background and a star model of human body. Then, establish a coordinate system of human body and extract fea- tures of distance, speed, angle and traiectory by coordinates of key points. CRF model is used for each feature subset and all the CRF models are combined to produce MCRF model,which is utilized to recognize human action. The experimental results in database of human behavior KTH indicate that human action can be recognized instantly and accurately by this method.
出处 《武警工程大学学报》 2016年第4期12-16,共5页 Journal of Engineering University of the Chinese People's Armed Police Force
关键词 星型模型 特征提取 多条件随机场 行为识别 star model feature extraction MCRF action recognition
  • 相关文献

参考文献14

二级参考文献40

  • 1杨锋,丁立,杨春信,袁修干.利用图像序列和人体模型重构人体的三维运动[J].生物医学工程学杂志,2005,22(2):307-311. 被引量:3
  • 2POLANA R, NELSON R. Low level recognition of human motion[ A]. Proceedings of IEEE Workshop on Motion of Non-Rigid and Articulated Objects[ C].1994. 77 -82. 被引量:1
  • 3NIU F, ABDEL-MOTTALEB M. View-invariant human activity recognition based on shape and motion features[ A]. Proceedings of IEEE Sixth International Symposium on Multimedia Software Engineering[C].2004. 546 -556. 被引量:1
  • 4REHG JM, MURPHY KP, FIEGUTH PW. Vision-based speaker detection using Bayesian networks[ A]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition[C].1999. 被引量:1
  • 5Daniel Weinland, Remi Ronfard, Edmond Boyer. A survey of vision-based methods for action representation, seg- mentation and recognition [ J ]. Computer Vision and Im- age Understanding,2010,115 ( 2 ) :224 - 241. 被引量:1
  • 6Bobiek A,Davis J. Real-time recognition of activity using temporal templates [ C ]//IEEE Workshop on Applica- tions of Computer Vision. [ S.l. ] : [ s. n. ], 1996:39 -42. 被引量:1
  • 7Veeraraghavan A, Chowdhury A K, Chellappa A. Matc- hing shape sequences in video with applications in human movement analysis [ J ]. IEEE Transaction on Pattern A- nalysis and Machine Intelligence, 2005,27 (12) : 1896 - 1909. 被引量:1
  • 8Yamato J,Ohya J,lshii K. Recognizing Human Action in time-sequential Images Using Hidden Markov Model [ C ]//Conference on Computer Vision and Pattern Rec- ognition. [S. l. ]:[s. n. ],1992:379-385. 被引量:1
  • 9Pau C C, Chin D L. A daily behavior enabled hidden Markov model for human behavior understanding[ J ]. Pat- tern Recognition ,2008,41:1572 - 1580. 被引量:1
  • 10Hasan M K,Rubaiyeat H A,Lee Y H,et al. A reconfigu- rablc HMM for activity rccogniiion [ C ]//International Conference on Advanced Conununication Technology. Korea: [ s. n. ] ,2008. 被引量:1

共引文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部