期刊文献+

遗传-模拟退火算法优化设计管壳式换热器

Optimization of a shell-and-tube heat exchanger based on a genetic simulated annealing algorithm
原文传递
导出
摘要 依据Bell-Delaware法对壳程流体进行压降和传热的计算,选择管径、管长、折流挡板数等结构参数作为主要设计变量,参考了美国管式换热器制造商协会(Tubular Exchanger Manufacturers Association,TEMA)标准作为相关约束条件,以换热器的年度总费用最低为目标函数,建立了管壳式换热器优化设计数学模型,并基于遗传-模拟退火算法(GA-SA)进行求解。文献算例的对比结果表明:算法能较好地权衡换热器的换热面积费用和泵的操作费用并搜索到全局最优解,从而获得总费用较低的换热器主要结构参数。针对一个实际工程项目,考虑换热器设计裕度要求,计算结果与商业化软件HTRI的预测值接近,说明所设计的换热器实际可行。同时克服了HTRI需要设计者的经验确定设计变量和无法保证经济性最优的不足。 A mathematical model was developed to optimize the design of a shell-and-tube heat exchanger based on design data obtained by using the Bell-Delaware method to describe the pressure drop and heat trans{er on the shell-side. The design variables were the tube diameter, the tube length, and other geometric parameters with the Tubular Exchanger Manufacturers Association (TEMA) standard taken as the reference for the constraints and the minimum total heat exchanger cost as the objective. The solution used the genetic simulated annealing algorithm (GA-SA). This method more effectively balances the heat exchanger area cost and pumping cost than previous methods by searching for the global optimal solution for the main geometric heat exchanger parameters with the minimum total cost. With the margin requirement for heat exchanger designs for specific industrial projects, these results are close to those given by commercial HTRI software, which indicates that this heat exchanger design method is reliable. This method guarantees the economic optimum without an empirical method to optimize the design variables in the heat exchanger design which is a major weakness of HTRI software packages.
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2016年第7期728-734,共7页 Journal of Tsinghua University(Science and Technology)
基金 国家自然科学基金资助项目(21206014 21125628) 中央高校基本科研业务费专项基金资助项目(DUT14LAB14) 中国石油化工股份有限公司资助项目(X514001)
关键词 管壳式换热器 遗传一模拟退火算法(GA-SA) Bell—Delaware法 优化设计 shell and-tube heat exchanger genetic simulated annealing algorithm (GASA) Bell Delaware method design and optimization
  • 相关文献

参考文献24

  • 1Yang J,Oh S R,Liu W.Optimization of shell-and-tube heat exchangers using a general design approach motivated by constructal theory[J].International Journal of Heat and Mass Transfer,2014,77(4):1144-1154. 被引量:1
  • 2Bahadori A.Simple method for estimation of effectiveness in one tube pass and one shell pass counter-flow heat exchangers[J].Applied Energy,2011,88(11):4191-4196. 被引量:1
  • 3Fesanghary M,Damangir E,Soleimani I.Design optimization of shell and tube heat exchangers using global sensitivity analysis and harmony search algorithm[J].Applied Thermal Engineering,2009,29(5):1026-1031. 被引量:1
  • 4Caputo A C,Pelagagge P M,Salini P.Heat exchanger design based on economic optimisation[J].Applied Thermal Engineering,2008,28(10):1151-1159. 被引量:1
  • 5Fettaka S,Thibault J,Gupta Y.Design of shell-and-tube heat exchangers using multiobjective optimization[J].International Journal of Heat and Mass Transfer,2013,60(1):343-354. 被引量:1
  • 6Babu B V,Munawar S A.Differential evolution strategies for optimal design of shell-and-tube heat exchangers[J].Chemical Engineering Science,2007,62(14):3720-3739. 被引量:1
  • 7Serna-González M,Ponce-Ortega J M,Castro-Montoya A J,et al.Feasible design space for shell-and-tube heat exchangers using the Bell-Delaware method[J].Industrial&Engineering Chemistry Research,2007,46(1):143-155. 被引量:1
  • 8Mizutani F T,Pessoa F L P,Queiroz E M,et al.Mathematical programming model for heat-exchanger network synthesis including detailed heat-exchanger designs.1.Shell-and-tube heat-exchanger design[J].Industrial&Engineering Chemistry Research,2003,42(17):4009-4018. 被引量:1
  • 9Onishi V C,Ravagnani M A S S,Caballero J A.Mathematical programming model for heat exchanger design through optimization of partial objectives[J].Energy Conversion and Management,2013,74:60-69. 被引量:1
  • 10Khosravi R,Khosravi A,Nahavandi S.Assessing performance of genetic and firefly algorithms for optimal design of heat exchangers[C]//2014IEEE International Conference on Systems,Man and Cybernetics(SMC).San Diego,USA:IEEE,2014:3296-3301. 被引量:1

二级参考文献23

  • 1Dolan, W B , Cummings, P T , LeVan, M D , "Algorithmic efficiency of simulated annealing for heat exchanger network design", Computers Chem. Eng., 14 (10), 1039 1050( 1990). 被引量:1
  • 2Athier G , Floquet, P , Pibouleau, L , Domenech, S , "Synthesis of heat-exchanger network by simulated annealing and NLP procedures", AIChE J , 43 (11), 3007-3020(1997). 被引量:1
  • 3Pavis, L , Handbook of Genetic Algorithms, Van NostranolReinhold, New York (1991). 被引量:1
  • 4Muhlenbein, H , Schomisch, M , Born, J , "The parallel genetic algorithms function optimizer", Parallel Computing,17, 619-632 (1991). 被引量:1
  • 5Zhou, M, Sun, S D , Genetic Algorithms: Theory and Applications, National Defense Industry Press, Beijing (1999).(in Chinese). 被引量:1
  • 6Goldberg, D , Genetic Algorithms in Search, Optimization and Machine Learning, Addision-Wesley, Reading, MA (1989). 被引量:1
  • 7Wang, K F , Qian, Y , Yuan, Y, Yao, P J , "Synthesis and optimization of heat integrated distillation systems using an improved genetic algorithm", Computers Chem. Eng.,22, 125-136 (1998). 被引量:1
  • 8Mahfound, S W , Goldberg, D E , "Parallel recombinative simulated annealing: A genetic algorithm", Parallel Computing, 21, 1-28 (1995). 被引量:1
  • 9Richardson, J , Palmer, M , Liepins, G , Hilliard, M ,"Some guidelines for genetic algorithms with penalty functions", In: Proceedings of Third International Conferenceon Genetic Algorithms, Morgan-Kaufmann, San Mateo, CA (1989). 被引量:1
  • 10Ciric, A.R., Floudas, C.A., "Heat exchanger networks syn-thesis without decomposition", Computers Chem. Eng, 15(10), 385-396 (1991). 被引量:1

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部