期刊文献+

基于遗传模拟退火算法的无线传感器网路由协议 被引量:5

WSNs routing protocol based on genetic simulated annealing algorithm
下载PDF
导出
摘要 在无线传感器网络中(WSNs)中,由于节点能量有限,为了延长整个网络的生存周期,提出一种基于遗传模拟退火算法的无线传感器网络路由协议。利用模拟退火(SA)算法具有较强的局部搜索能力并能以稳定的速度收敛,克服遗传算法(GA)局部搜索能力差并容易早熟收敛等缺点。该路由协议在簇头节点选举时充分考虑了节点的剩余能量,并根据网络中数据转发能量耗损和延迟时间建立个体适应度函数,采用遗传模拟退火算法找到簇头节点到基站的最优路径。仿真结果表明:与其他协议比较,该方法不仅可以均衡各个节点的剩余能量,还可以有效延长整个网络生存周期和提高网络的数据传输能力。 In wireless sensor networks( WSNs),due to limited energy of node,in order to extend life cycle of the whole network,a kind of WSNs routing protocol based on genetic simulated annealing algorithm is proposed. Using the simulated annealing algorithm has strong local search ability and can converge in stabilize speed,overcome shortcomings of poor local search ability and easy to premature convergence of Genetic algorithm. The routing portocol fully considers residual energy of nodes in election of cluster head nodes,and according to energy loss of data forwarding in network and delay time to establish individual fitness function,using genetic simulated annealing algorithm to find the optimal path from cluster head nodes to base station. Simulation results show that,compared with other protocols,this method can not only balance remaining energy of each node,but also can effectively prolong the network life cycle and improve data transmission capability of network.
作者 崔小勇 林宁
出处 《传感器与微系统》 CSCD 2016年第7期32-34,共3页 Transducer and Microsystem Technologies
基金 国家自然科学基金资助项目(61272098) 上海市科委科研计划重点支撑资助项目(1251050200)
关键词 无线传感器网络 遗传算法 模拟退火 生存周期 wireless sensor networks(WSNs) genetic algorithm(GA) simulated annealing(SA) life cycle
  • 相关文献

参考文献8

二级参考文献121

  • 1张秋余,彭铎,刘洪国.基于能量的无线传感器网络分簇路由算法[J].计算机应用研究,2009,26(2):674-676. 被引量:4
  • 2李成法,陈贵海,叶懋,吴杰.一种基于非均匀分簇的无线传感器网络路由协议[J].计算机学报,2007,30(1):27-36. 被引量:373
  • 3[1]Vieira M.A.M.,Junior D.S.,Jr.C.N.C.et al.Survey on wireless sensor network devices.In:Proceedings of IEEE International Conference on Emerging Technologies and Factory Automation (ETFA),2003,537-544. 被引量:1
  • 4[2]Culler D.,Estrin D.and Srivastava M.Sensor network applications.IEEE Computer,2004,41-78. 被引量:1
  • 5[3]Akyildiz I.F.,Su W.,Sankarasubramaniam Y.et al.A survey on sensor networks.IEEE Communications Magazine,2002,40:102-114. 被引量:1
  • 6[4]Kahn J.M.,Katz R.H.and Pister K.S.J.Next centruy challenges:Mobile networking for smart dust.In:Proceedings of ACM MobiCom,1999,271-278. 被引量:1
  • 7[5]Xue W.,Luo Q.,Chen L.et al.Contour map matching for event detection in sensor networks.In:Proceedings of SIGMOD,2006,145-156. 被引量:1
  • 8[6]Delin K.A.,Jackson S.P.,Johnson D.W.et al.Sensor web for spatio-temporal monitoring of a hydrological enviroment.In:Proceedings of Lunar and Planetary Science Conference,2004,1430-1438. 被引量:1
  • 9[7]NASA/JPL.SensorWebs.http://sensorwebs.jpl.nasa.gov 08-05-06. 被引量:1
  • 10[8]FloodNet:Pervasive computing in the environment.http://envisense.org/floodnet/floodnet.htm 07-29-04. 被引量:1

共引文献2070

同被引文献25

引证文献5

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部