期刊文献+

用广义扩展有限元计算界面裂纹应力强度因子 被引量:2

SIFs of interfacial crack using generalized extended finite element method
下载PDF
导出
摘要 广义扩展有限元法(GXFEM)是一种结合广义有限元法和扩展有限元法特点的新的数值模拟方法。给出了分析双材料界面裂纹应力强度因子(SIF)的广义扩展有限元法的基本原理。提出了一种新的双材料界面裂纹尖端富集函数,将裂纹尖端富集函数由12项缩减为6项。双材料界面不连续,在常规有限元法的位移模式中加入基于水平集的富集函数,同时将裂纹单元结点和裂纹尖端单元结点自由度广义化,提高了计算精度。通过与文献结果的比较,表明了提出方法的精确度和可靠度。 Generalized extended finite element method( GXFEM) is a new numerical simulation method which combines both the generalized finite element and the extended finite element. The principle of the generalized extended finite element method for analyzing the stress intensity factor( SIF) of bi-material interfacial cracks is proposed. A new enriched function for bi-material interfacial crack tip is proposed,and the twelve crack tip enriched functions are reduced to the six ones. Because of the discontinuity of bi-material interface,enrichment functions based on level set are added in the displacement mode of the conventional finite element method. And the node freedom of the crack element and crack tip element are also generalized. Besides,the calculation precision is improved. A comparison of literature method and GXFEM calculations of numerical examples shows the the accuracy and reliability of the proposed method.
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2016年第6期1162-1168,共7页 Journal of Beijing University of Aeronautics and Astronautics
基金 航空科学基金(2010ZF56016)~~
关键词 广义扩展有限元法(GXFEM) 界面裂纹 裂纹尖端富集函数 水平集 应力强度因子(SIF) generalized extended finite element method(GXFEM) interfacial crack crack tip enriched function level set stress intensity factor(SIF)
  • 相关文献

参考文献15

  • 1MATSUMTO T,TANAKA M,OBARA R. Computation of stress intensity factors of interface cracks based on interaction energy release rates and BEM sensitivity analysis [ J ]. EngineeringFracture Mechanics, 2000,65 ( 6 ) : 683 -702. 被引量:1
  • 2LIU Z L, MENOUILLARD T, BELYTSCHKO T. An XFEM/ spectral element method for dynamic crack propagation[ J]. In- ternational Journal of Fracture ,2011,169 (2) : 183-198. 被引量:1
  • 3CHENG K W, FRIES T P. Higher-order XFEM for cured strong and weak discontinuities [ J ]. International Journal for Numeri- cal Methods in Engineering,2010,82(5 ) :564-590. 被引量:1
  • 4MOUSAVI S E, GRINSPUN E, SUKUMAR N. Higher-order ex- tended finite elements with harmonic enrichment functions for complex crack problems [ J ]. International Journal for Numerical Methods in Engineering,2011,86(4-5) :560-574. 被引量:1
  • 5GRACIE R,WANG H W, BELYTSCHKO T. Blending in the extended finite element method by discontinuous Galerkin and assumed strain methods [ J ]. International Journal for Numerical Methods in Engineering, 2008,74 ( 11 ) : 1645 -1669. 被引量:1
  • 6MOTAMEDI D, MOHAMMADI S. Dynamic analysis of fixed cracks in composites by the extended finite element method [ J ]. Engineering Fracture Mechanics, 2010, 77 ( 17 ) : 3373 -3393. 被引量:1
  • 7BELYTSCHKO T, BLACK T. Elastic crack growth in finite ele- ments with minimal remeshing [ J ]. International Journal for Nu- merical Methods in Enginering, 1999,45 ( 5 ) :601-620. 被引量:1
  • 8MOilS N,DOLBOW J,BELYTSCHKO T. A finite element method for crack growth without remeshing [ J ]. International Journal for Numerical Methods in Engineering, 1999,46 ( 1 ) : 131-150. 被引量:1
  • 9章青,刘宽,夏晓舟,杨静.广义扩展有限元法及其在裂纹扩展分析中的应用[J].计算力学学报,2012,29(3):427-432. 被引量:24
  • 10PATHAK H,SINGH A, SINGH I V. Numerical simulation of bi-material interracial cracks using EFGM and XFEM [ J ]. In- ternational Journal of Mechanics and Materials in Design ,2012, 8(1) :9-36. 被引量:1

二级参考文献23

  • 1方修君,金峰,王进廷.用扩展有限元方法模拟混凝土的复合型开裂过程[J].工程力学,2007,24(z1):46-52. 被引量:45
  • 2李录贤,王铁军.扩展有限元法(XFEM)及其应用[J].力学进展,2005,35(1):5-20. 被引量:132
  • 3梁国平,何江衡.广义有限元方法──一类新的逼近空间[J].力学进展,1995,25(4):562-565. 被引量:22
  • 4余天堂.含裂纹体的数值模拟[J].岩石力学与工程学报,2005,24(24):4434-4439. 被引量:27
  • 5Babushka I, Osborn J E. Generalized finite element methods; their performance and their relation to mixed methods[J]. SIAM Journal for Numerical Analysis, 1983,20(3) : 510-535. 被引量:1
  • 6Strouboulis T,Copps K, Babushka I. The generalized finite element method: an example of its implementa- tion and illustration of its performance[J]. Interna- tional Journal for Numerical Methods in Engineer- ing ,2000,47:1401-1417. 被引量:1
  • 7Babuska I,Banerjee U, Osborn J E. On the principles for the selection of shape functions for the generalized finite element method[J]. Computer Methods in Ap- plied Mechanics and Engineering ,2002,191(49-50) : 5595-5629. 被引量:1
  • 8Babuska I,Banerjee U, Osborn J E. Generalized finite element methods-main ideas, results and perspective [J]. International Journal for Numerical Methods in Engineering, 2004,1 (1) : 67-103. 被引量:1
  • 9Strouboulis T, Zhang L, Babushka I. Generalized fi- nite element method using mesh-based handbooks: application to problems in domains with many voids [J]. Computer Methods in Applied Mechanics and Engineering, 2006,195 :852-879. 被引量:1
  • 10Belytschko T,Black T. Elastic crack growth in finite elements with minimal remeshing[J]. International Journal for Numerical Methods in Engineering, 1999,45:601-620. 被引量:1

共引文献36

同被引文献7

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部