期刊文献+

混合蛙跳算法自适应参数调整改进策略 被引量:14

Improvement strategy of adaptive parameter adjustment for shuffled frog leaping algorithm
下载PDF
导出
摘要 针对基本混合蛙跳算法(shuffled frog leaping algorithm,SFL)在求解高维复杂问题时的不足,本文提出一种自适应参数调整的改进策略。首先,利用变公比数列分析了SFL更新轨迹的收敛性;在此基础上,利用系统稳定性分析方法,提出在SFL更新公式中基于比例系数和适应度标准差来自适应调整更新的方法。最后,基于3组共8个标准测试函数将本文改进SFL与基本SFL和4个改进型粒子群优化算法(particle swarm optimization,PSO)作对比,验证了本文改进策略对各类复杂函数的高效性;同时,对比了改进SFL与基本SFL和wPSO在求解高维问题时的性能,验证了改进SFL对高维问题求解的有效性。 An improvement strategy of adaptive parameter adjustment is proposed to improve the efficiency of the shuffled frog leaping algorithm(SFL)in solving high dimensional complex problems.First of all,the convergence feature of the SFL is analyzed based on the theory of geometrical sequence.Then,an improvement strategy of adaptive parameter adjustment based on proportional coefficient and fitness standard deviation is proposed to the update the formula.Finally,based on three groups of eight criteria functions,the performance of the modified SFL with basic SFL and four modified particle swarm optimization(PSO)is compared,and the results verify the high-efficiency of the improvement strategy for various complex functions.Meanwhile,the performance of the modified SFL with basic SFL and wPSO on solving high dimension problems is compared,and the results verify the validity of the modified SFL.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2016年第8期1939-1950,共12页 Systems Engineering and Electronics
基金 国家高技术研究发展计划(863计划)(2015AA042101)资助课题
关键词 混合蛙跳算法 收敛性 自适应参数调整 智能计算 shuffled frog leaping(SFL)algorithm convergence feature adaptive parameter adjustment intelligent computing
  • 相关文献

参考文献18

  • 1Eusuff M M, Lansey K E. Optimization of water distribution network design using the shuffled frog leaping algorithm [J]. Journal of Water Resources Planning and Management, 2003, 129(3) : 210 - 225. 被引量:1
  • 2Emad E, Tarek H, Donald G. A modified shuffled frog-leaping opti- mization algorithm: applications to project management[J]. Structure and Infrastructure Engineering, 2007, 3(1) : 53 - 60. 被引量:1
  • 3Bhattacharjee K K, Sarmah S P. Shuffled frog leaping algorithm and its application to 0/1 knapsack problem[J]. Applied Soft Computing, 2014, 19(19): 252-263. 被引量:1
  • 4罗雪晖,杨烨,李霞.改进混合蛙跳算法求解旅行商问题[J].通信学报,2009,30(7):130-135. 被引量:93
  • 5Elbeltagi E, Hegazy T, Grierson D. Comparison among five ev- olutionary-based optimization algorithms [J]. Advanced Engi- neering Informatics, 2005, 19(1): 43- 53. 被引量:1
  • 6肖莹莹,柴旭东,李伯虎,王秋生.混合蛙跳算法的收敛性分析及其改进[J].华中科技大学学报(自然科学版),2012,40(7):15-18. 被引量:12
  • 7Yang C S, Chuang L Y, Ke C H, et. al. A combination of shuf- fled frog-leaping algorithm and genetic algorithm for gene selec- tion[J]. Journal of Advanced Computational Intelligence and Intelligent Informatics, 2008, 12(3): 218-226. 被引量:1
  • 8Zhang X, Hu X, Cui G, et al. An improved shuffled frog lea- ping algorithm with cognitive behavior[C] // Proc. of the 7th IEEE World Congress on Intelligent Control and Automation, 2008: 6197-6202. 被引量:1
  • 9Zhen Z, Wang D, Liu Y. Improved shuffled frog leaping algorithm for continuous optimization problem[C]//Proc, of the IEEE Con- gress on Evolutionary Computation, 2009: 2992- 2995. 被引量:1
  • 10Huynh T H. A modified shuffled frog leaping algorithm for op- timal tuning of multivariabte PID controllers[C]/I/Proc, of the IEEE International Conference on Industrial Technology,2008:1 -6. 被引量:1

二级参考文献33

共引文献216

同被引文献122

引证文献14

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部