期刊文献+

中试规模微气泡曝气生物膜反应器运行性能评估 被引量:3

Performance Evaluation of a Pilot-scale Microbubble-aerated Biofilm Reactor
原文传递
导出
摘要 运行中试规模微气泡曝气生物膜反应器处理校园生活污水,对其运行性能进行评估,并与传统生物处理工艺比较.结果表明,采用中试系统处理校园生活污水原水时,平均COD去除率和去除负荷分别为57.0%和2.68 kg·(m^3·d)^(-1),平均氨氮去除率和去除负荷分别为17.4%和0.17 kg·(m^3·d)^(-1),平均TN去除率和去除负荷分别为15.8%和0.21 kg·(m^3·d)^(-1),平均氧利用率达到100%.采用中试系统处理可生化性较差的生物接触氧化池出水,平均COD去除率和去除负荷分别为46.0%和1.53 kg·(m^3·d)^(-1);平均氨氮去除率和去除负荷分别为17.1%和0.32 kg·(m^3·d)^(-1);平均TN去除率和去除负荷分别为14.1%和0.28 kg·(m^3·d)^(-1);平均氧利用率高于50%.由于微气泡曝气能够加速氧传质过程并提高氧利用率,因此相同进水条件下,中试系统污染物去除能力显著优于传统生物接触氧化工艺和传统曝气生物滤池工艺. A pilot-scale microbubble-aerated biofilm reactor was operated to treat campus domestic wastewater and its performance was evaluated and compared with conventional biological treatment processes. The results indicated that when the raw campus domestic wastewater was treated in the pilot system,the average COD removal efficiency and loading rate removed were 57. 0% and 2. 68kg·(m^3·d)^(-1); the average ammonia nitrogen removal efficiency and loading rate removed were 17. 4% and 0. 17 kg·(m^3·d)^(-1); the average total nitrogen( TN) removal efficiency and loading rate removed were 15. 8% and 0. 21 kg·(m^3·d)^(-1); and the average oxygen utilization efficiency reached 100%. When the effluent of biological contact oxidation tank with poor biodegradability was treated in the pilot system,the average COD removal efficiency and loading rate removed were 46. 0% and 1. 53 kg·(m^3·d)^(-1); the average ammonia nitrogen removal efficiency and loading rate removed were 17. 1% and 0. 32 kg·(m^3·d)^(-1); the average total nitrogen( TN)removal efficiency and loading rate removed were 14. 1% and 0. 28 kg·(m^3·d)^(-1); and the average oxygen utilization efficiency was higher than 50%. Furthermore,the contaminant removal performance of the pilot system was much more efficient than conventional biological contact oxidation tank and biological aeration filter tank with the same influent quality,since oxygen transfer and oxygen utilization could be enhanced by microbubble aeration.
出处 《环境科学》 EI CAS CSCD 北大核心 2016年第7期2632-2638,共7页 Environmental Science
基金 河北省自然科学基金项目(E2015208140)
关键词 微气泡曝气 生物膜反应器 中试规模 性能评估 OHR混合器 microbubble aeration biofilm reactor pilot scale performance evaluation OHR mixer
  • 相关文献

参考文献21

  • 1张磊,刘平,刘春,杨景亮.微气泡及其在环境污染控制中的应用[J].河北工业科技,2011,28(1):59-63. 被引量:21
  • 2Park J Y, Choi Y J, Moon S, et al. Microbubble suspension as a carrier of oxygen and acclimated bacteria for phenanthrene biodegradation[ J]. Journal of Hazardous Materials, 2009, 163 (2-3) : 761-767. 被引量:1
  • 3Liu S, Wang Q H, Ma H Z, et al. Effect of micro-bubbles on coagulation flotation process of dyeing wastewater[J].Separation and Purification Technology, 2010, 71 (3) : 337-346. 被引量:1
  • 4Agarwal A, Ng W J, Liu Y. Principle and applications of microbubble and nanobubble technology for water treatment [ J ]. Chemosphere, 2011, 84(9): 1175-1180. 被引量:1
  • 5Chu L B, Xing X H, Yu A F, et al. Enhanced treatment of practical textile wastewater by microhubble ozonation [ J ]. Process Safety and Environmental Protection, 2008, 86 ( 5 ) :389-393. 被引量:1
  • 6Ikeura H, Hamasaki S, Tamaki M. Effects of ozone microbubble treatment on removal of residual pesticides and quality of persimmon leaves[ J]. Food Chemistry, 2013, 138 ( 1 ) : 366- 371. 被引量:1
  • 7Khuntia S, Majumder S K, Ghosh P. Oxidation of As(Ill) to As( V ) using ozone mierobubbles [ J ]. Chemosphere, 2014, 97: 120-124. 被引量:1
  • 8Zheng T L, Wang Q H, Zhang T, et al. Microbubble enhanced ozonation process for advanced treatment of wastewater produced in acrylic fiber manufacturing industry[ J]. Journal of Hazardous Materials, 2015, 287: 412-420. 被引量:1
  • 9Rehman F, Medley G J D, Bandulasena H, et al. Fluidic oscillator-mediated mierobubble generation to provide cost effective mass transfer and mixing efficiency to the wastewater treatment plants[ J ]. Environmental Research, 2015, 137 : 32- 39. 被引量:1
  • 10Terasaka K, Hirabayashi A, Nishino T, et al. Development of microbubble aerator for waste water treatment using aerobic activated sludge[J].Chemical Engineering Science, 2011, 66 (14) : 3172-3179. 被引量:1

二级参考文献124

共引文献190

同被引文献24

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部