摘要
本文分析了传统影响因子的时间问题,认为传统影响因子既不是存量指标,也不是流量指标,而且计算数据一半是第二年的被引频次,一半是第一年的被引频次,时间逻辑不一致,本文在此基础上提出了一个新的改进指标——R影响因子,即期刊发表论文后第一年、第二年的篇均被引频次。然后基于CSSCI(2014—2015)图书馆、情报与文献学期刊以及中国知网引文数据进行实证,结果表明,传统的影响因子由于许多期刊被引峰值滞后而存在较大的计算误差,而R影响因子只有少数期刊被引峰值滞后,从而极大地减小了计算误差。
This paper analyzes the time problem of traditional impact factor and thinks the traditional impact factor is neither stock index, nor the flow index. Besides the calculated data is half second years citations, half of the first year of citation frequency, so there is a logical error in time. And then we propose a new and improved indicator--R impact factor, that is to say, citation times after the paper is published in the journal in the first year, the second year. Then, based on CSSCI's(2014--2015) library, information and documentation science journals and Chinese HowNet citation data, we conduct an empirical analysis. The result shows that traditional impact factor exists a big calculation error because of the lagging of many journals citation peak, while R impact factor only has few journals citation peak lags, which greatly reduces the computational errors.
出处
《图书情报知识》
CSSCI
北大核心
2016年第4期69-73,101,共6页
Documentation,Information & Knowledge
基金
浙江省自然科学基金"省际基础研究绩效的差距与形成机制研究"(LY14G030005)
中国社科院与宁波合作共建研究中心课题"中国发达城市经济发展水平评价研究"(NZKT201532)和"宁波市经济发展的机遇与挑战"(NZKT201533)的研究成果之一