期刊文献+

一种云存储系统分层性能监测和采集方法 被引量:2

A Layered Performance Monitoring and Gathering Method of Cloud Storage
下载PDF
导出
摘要 为了解决现有云存储监测方法无法获得完整的系统特性,以确定最佳应用场景并定位性能瓶颈,根据云存储系统的分层架构,调查研究了云存储系统层上的性能监测和采集方法,并提出了一种针对云存储系统层进行分层性能监测和采集的框架。该框架可以获得云存储系统各个系统层次的性能数据,并做进一步的综合对比分析,确定系统的应用场景并定位系统瓶颈,从而对其进行进一步优化。最后在ceph云存储系统上进行了实验,验证了新方法的可用性。 In order to solve the problem that existing cloud storage monitoring methods can't obtain the whole system characters to find the best application scenario or perform failure analysis,this paper reviewed the models that used to monitor and gather performance data on system layers of cloud storage system,and proposed a frmework which can evaluate the whole system by gathering and analyzing performance information of main layers in cloud storage according to it's layered architecture. This framework can gather performance data of system layers to do further analysis,determine the best application scenario and locate system bottlenecks,then provide some optimized advises to improve the system. In the end,an experiment was conducted on the ceph cloud storage system using this method,the result verified the availability of proposed method.
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 2016年第3期529-535,共7页 Journal of Northwestern Polytechnical University
基金 国家"863"重大项目(2013AA01A215) 自然科学基金面上项目(61472323) 西北工业大学基础研究基金(3102015JSJ0009) 高效能服务器和存储技术国家重点实验室开放基金(2014HSSA11)资助
关键词 云存储 分层架构 性能监测 数据采集 cloud storage performance evaluation monitoring model failure analysis
  • 相关文献

参考文献14

  • 1International Data Corporation(IDC). Big Data-The Challenges and the Opportunity(2013-10-31), http://nextgendistribution.com.au/industry-trends/big-data-challenges-opportunity/. 被引量:1
  • 2Antoniou A. Performance Evaluation of Cloud Infrastructure Using Complex Workloads[D]. Delft University of Technology, 2012. 被引量:1
  • 3Cooper B F, Silberstein A, Tam E, et al. Benchmarking Cloud Serving Systems with YCSB[C]//Proceedings of the 1st ACM Symposium on Cloud Computing, 2010: 143-154. 被引量:1
  • 4Zhang X, Feng W X, Qin X. Performance Evaluation of Online Backup Cloud Storage[J]. International Journal of Cloud Applications and Computing, 2013, 3(3): 20-33. 被引量:1
  • 5Tan J, Kavulya S, Gandhi R, et al. Visual, Log-Based Causal Tracing for Performance Debugging of Map Reduce Systems[C]//30th IEEE International Conference on Distributed Computing Systems, 2010: 795-806. 被引量:1
  • 6Chen Y, Srinivasan K, Goodson G, et al. Design Implications for Enterprise Storage Systems via Multi-Dimensional Trace Analysis[C]//Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles, 2011:43-56. 被引量:1
  • 7Ballani H, Costa P, Karagiannis T, et al. Towards Predictable Datacenter Networks[C]//ACM Computer Communication Review of Special Interest Group on Data Communication, 2011, 41(4): 242-253. 被引量:1
  • 8Benjamin H Sigelman, Luiz Andre Barroso, Mike Burrows, et al. Dapper, a Large-Scale Distributed Systems Tracing Infrastructure[R]. Google Research,2010. 被引量:1
  • 9Boulon J, Konwinski A, Qi R, et al. Chukwa, A Large-Scale Monitoring System[C]//Proceedings of Computability and Complexity in Analysis. 2008, 8: 1-5. 被引量:1
  • 10Kutare M, Eisenhauer G, Wang C, et al. Monalytics: Online Monitoring and Analytics for Managing Large Scale Data Centers[C]//Proceedings of the 7th International Conference on Autonomic Computing,2010:141-150. 被引量:1

二级参考文献10

  • 1Christian Baun,Marcel Kunze.Performance measurement of aprivate cloud in the opencirrusTM testbed. http://www.springerlink.com/index/Y455768860Q87275.pdf . 2010 被引量:1
  • 2Jeffrey Shafer.I/O virtualization bottlenecks in cloud computingtoday[].The Second Workshop on I/O Vir-tualization.2010 被引量:1
  • 3Pratt K,Fraser S,Hand C,et al.Xen 3.0 and the art of virtualiza-tion. http://landley.net/kdocs/ols/2005/ols2005v2-pages-73-86.pdf . 2010 被引量:1
  • 4Aranya A,Wright C P,Zadok E.Tracefs:A file system to tracethem all. http://www.fsl.cs.sunysb.edu/docs/tracefs-fast04/tracefs.pdf . 2010 被引量:1
  • 5Falk E.Patch:Intruduce block I/O performance histograms. http://lwn.net/Articles/209770/ . 2010 被引量:1
  • 6Falk E.Introduce block I/O performance histograms. http://lwn.net/Articles/209770/ . 2010 被引量:1
  • 7Phyllis E Crandall,Ruth A Aydt,Andrew A Chien,et al.Input/Output Characteristics of Scalable Parallel Applications[].Proceedings of the IEEE/ACMSC Conference.1995 被引量:1
  • 8Parziale L,Belardi M,Held M,et al.Linux on IBM system z:Per-formance measurement and tuning. http://www.red-books.ibm.com/redbooks/pdfs/sg246926.pdf . 2010 被引量:1
  • 9Nurmi D,Wolski R,Grzegorczyk C,et al.The eucalyptus open-source cloud-computing system[].Proceedings of the thIEEE/ACM International Symposium on Cluster Computing andthe Grid (CCGRID’’’’).2009 被引量:1
  • 10Ahmad I.Easy and efficient disk I/Oworkload characterization in VMwareESX server[].Proceedings of IEEE th International Symposium onWorkload Characterization.2007 被引量:1

共引文献1

同被引文献6

引证文献2

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部