摘要
针对2014年9月13日发生于四川和重庆交界地区的暴雨过程进行分析,利用卫星云图资料以及地面加密观测资料和NECP_FNL1°×1°再分析格点资料对物理量场和环流背景场分析研究。得到此次强对流天气过程是由中尺度对流云团的生成、发展及合并造成的,并在低空切变线和低空急流的共同作用下产生的强降水天气;此次暴雨过程在川东北与重庆西地区有密集θse带,且处于CAPE高值区,有不稳定能量堆积;处于水汽通量散度负值区,为强降水提供了水汽条件;同时高层辐散、低层辐合的系统配置提供了动力条件。在卫星红外云图上可以清晰看出中尺度对流系统的发生、发展及合并的过程,且暴雨落区与TBB≤-62℃的冷云覆盖范围相对应,TBB≤-62℃冷云覆盖范围最大的时间段出现在小时降水最大值之后的1 h左右,且暴雨落区中心位于冷云区域的西南方,降水过程发生在TBB值变化率大值区即TBB等值线密集区。同时在水汽云图中强对流天气发生在亮温低值区域的对流云团中。
In view of the storm occurred in 13th September 2014 in the Sichuan, using the observation data and the NCEP_FNL reanalysis datathe storm process. The results indicate that: during the process of convective weather in northeastern Sichuan, the storm caused by the development and consolidation mesoscale convective cloud, the low shear line and the low-level jet together, which can provide a favorable environment for producing heavy precipitation condi- tion; northeastern Sichuan and western Chongqing are located in the 0se dense band, and in the high CAPE area, as heavy rain provides unstable energy; vapor flux divergence is in the negative area, which providing the conditions of heavy precipitation; higher divergence and convergence in the lower configuration provided the dynamical conditions for the development of precipitation. The development and consolidation of the mesoscale convective systems can be viewed by infrared satellite imagery, and the heavy rainfall area is corresponding with the cold cloud TBB ≤-62 ℃, and the maximum of TBB ≤-62 ℃ cold cloud coverage later than the rainfall maximum time, while heavy precipitation district located at the southwest side of cold clouds, recipitation occurs in the high TBB value change area. The convective weather is more Drone to occur in the low brizhtness temneraturc clouds.
出处
《成都信息工程学院学报》
2016年第1期102-109,共8页
Journal of Chengdu University of Information Technology
基金
国家自然科学基金资助项目(91337215)
国家重点基础研究发展计划973资助项目(2012CB417202
2013CB733206)
四川省科技资助项目(2013JY0063)
关键词
大气科学
暴雨诊断
风云卫星
川东北
红外亮温
水汽亮温
atmospheric sciences
rainstorm diagnosis
FY-2E
the Northeast Of Sichuan
infrared bright temperature
water vapor light temperature