期刊文献+

一类常微分p-Laplace系统的周期解

Periodic Solutions for a Class of Ordinary p-Laplacian Systems
下载PDF
导出
摘要 利用变分原理研究超线性常微分p-Laplace系统周期解的存在性.在带有脉冲和阻尼作用项时,根据Z_2-型山路定理,得到了系统多重周期解的存在性. By using variational principle, the authors studied the existence of periodic solutions for ordinary p-Laplacian systems with impulsive effects and damped vibration in the cases when the nonlinearity grows superlinearly. Some results for existence of multiplicity of periodic solutions are obtained via the Z2-type mountain pass theorem.
作者 张申贵
出处 《应用泛函分析学报》 2016年第2期150-157,共8页 Acta Analysis Functionalis Applicata
基金 国家自然科学基金(31260098) 天元数学基金(11326100)
关键词 常微分p-Laplace系统 周期解 临界点 ordinary p-Laplacian systems periodic solutions critical point
  • 相关文献

参考文献17

  • 1Mawhin J. Some bondary ~lue problems for Hartman-type perturbations of the ordinary vactor p- Laplacian[J]. Nonlinear Anal, 2000, 40(6): 497-503. 被引量:1
  • 2Li C, Ou Z Q, Tang C L. Periodic solutions for non-autonomons second-order differential systems with (q, p)-Laplacian[J]. Electronic Journal of Differential Equations, 2014, 64(2): 1-13. 被引量:1
  • 3Xu B, Tang C L. Some existence results on periodic solutions of ordinary p-Laplacian systems[J]. J Math Anal Appl, 2007, 333(2): 1228-1236. 被引量:1
  • 4Wang Z Y, Zhang J H. Periodic solutions of nonautomons second orderr systems with p-Laplacian[J]. Elec- tronic J Differential Equations, 2009, 17(1): 1-12. 被引量:1
  • 5Zhang L, Ge W G. Periodic solutions for a kind of p-Laplacian Hamiltonian systems[J]. Bull Korean Math Soc, 2010, 47(2): 355-367. 被引量:1
  • 6Zhang X Y, Tang C L. Periodic solutions for an ordinary p-Laplacian system[J]. Taiwan Residents Journal of Mathematics, 2011, 33(3): 1369--1396. 被引量:1
  • 7张申贵.一类非自治常p-Laplace系统的多重周期解[J].应用泛函分析学报,2014,16(2):177-182. 被引量:1
  • 8Zhou J W, Wang Y N, Li Y K. Existence and multiplicity of solutions for some second-order systems on time scales with impulsive effects[J]. Boundary Value Problems, 2012, 148(1): 1-26. 被引量:1
  • 9Zhou J W, Li Y K. Existence of solutions for a class of second-order Hamiltonian systems with impulsive effects[J]. Nonlinear Anal, 2010, 72(3): 1594-1603. 被引量:1
  • 10Vicoria O, Tania P. Variational approach to second-order impulsive dynamic equations on time scales[J]. Boundary Value Problems, 2013, 119(3): 1-15. 被引量:1

二级参考文献14

  • 1张申贵.一类次线性非自治二阶系统的多重周期解[J].应用泛函分析学报,2013,15(2):131-136. 被引量:2
  • 2Jebelean P, Morosanu G. Ordinary p-Laplacian systems with nonlinear boundary conditions [J]. J Math Anal Appl, 2006, 313: 738-753. 被引量:1
  • 3Xu B, Tang C L. Some existence results on periodic solutions of ordinary p-Laplacian systems [J]. J Math Anal Appl, 2007, 333: 1228-1236. 被引量:1
  • 4Tang X H, Xiao L. Homoclinic solutions for ordinary p-Laplacian systems with a coercive potential [J]. Nonlinear Anal, 2009, 71: 1124-1132. 被引量:1
  • 5Chen P, Tang X H. Existence of solutions for a class of p-Laplacian systems with impulsive effects [J]. Journal of Taiwanses Mathematics, 2012, 16: 803-828. 被引量:1
  • 6Nieto J J, O'Regan D. Variational approach to impulsive differential equations[J]. Nonlinear Anal 2009, 10: 680-690. 被引量:1
  • 7Sun J T, Chen H B, Yang L. Variational methods to fourth-order impulsive differential equations [J]. J Appl Math Comput, 2011, 35: 323-340. 被引量:1
  • 8Tian Y, Ge W G. Applications of variational methods to boundary value problem for impulsive differential equations [J]. Proc Edinburgh Math Soc, 2008, 51: 509-527. 被引量:1
  • 9Zhou J W, Li Y K. Existence and multiplicity of solutions for some Dirichlet problems with impulsive effects [J]. Nonlinear Anal, 2009, 71: 2856-2865. 被引量:1
  • 10Sun J T, Chen H B, Yang L. The existence and multiplicity of solutions for an impulsive differential equation with two parameters via a variational method [J]. Nonlinear Anal, 2010, 73: 440-449. 被引量:1

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部