期刊文献+

直角三角形台球系统的符号动力学分析

Symbolic Dynamic Analysis of Right Triangular Billiard
下载PDF
导出
摘要 文章建立直角三角形台球系统的符号动力学描述。通过把直角三角形台球桌内台球运动的方程化简成二维分片映射,得到了相平面上的分割线,从而正、逆映射的分叶线分别被赋予了正、逆向单边无穷符号序列,建立了相空间轨道和符号序列空间的对应。引入度规后,符号空间转化为符号平面,并在符号平面上定义了基本禁止区,初步分析了系统的动力学行为。 The symbolic dynamics or the right triangular billiard is studied in this paper. A two-dimensional piecewise map is constructed to describe the billiard dynamics. The map has two partition lines which appear as straight lines. The phase space is thus foliated flowing the forward and backward maps in a simple manner. With the help of the basic forbidden zone on the symbolic plane, the dynamics of the system is studied primarily.
出处 《新疆师范大学学报(自然科学版)》 2016年第2期51-55,共5页 Journal of Xinjiang Normal University(Natural Sciences Edition)
基金 国家自然科学基金项目(11335006) 新疆师范大学本科教学质量工程建设教学研究与改革项目(SDJG2016-10)
关键词 三角形台球系统 符号动力学 遍历性 Triangular Billiard Symbolic dynamics Ergodicity
  • 相关文献

参考文献9

  • 1G. Casati and T. Prosen, Phys[J]. Rev. Lett, 1999(83) :4729. 被引量:1
  • 2Roberto Artuso, Giulio Casati, and halo Guarneri. Numerical study on ergodic properties of triangular billiards [ J ].Physical Review E, 1997,55 (6) :6384. J. 被引量:1
  • 3unxiang Huang and Hong Zhao. Broken ergodicity of right triangular billiard systems[J], arXiv:2016,1603.06209. 被引量:1
  • 4Eugene Gutkin. Billiards in polygons: survey of ~cent results [J]. Journal of statistical physics, 1996,83 (1):7-26. 被引量:1
  • 5Eugene Gutkin. Billiard dynamics: An updated survey with the emphasis on open problems [ J ]. Chaos, 2012,22 (2) :6116. 被引量:1
  • 6G Galperin and D Zvonkine. Periodic billiard trajectories in right triangles and right-angled tetrahedra[J]. Regular and Chaotic Dynamics, 2003,8 ( 1 ):29-44. 被引量:1
  • 7Serge Troubetzkoy. Periodic billiard orbits in right triangles[J]. In Annales de l'institut Fourier, 2005, (55) :29-46. 被引量:1
  • 8W Patrick Hooper. Periodic billiard paths in right triangles are unstable[J]. Geometriae Dedicata, 2007,125( 1 ):39-46. 被引量:1
  • 9Bai-Lin Hao and Wei-Mou Zheng. Applied symbolic dynamics and chaos[Jl. World scientific, 1998, (7). 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部