摘要
利用Fe0活化Na_2S_2O_8产生具有强氧化性的SO-4·催化降解目标物结晶紫。研究不同因素(阴极液初始pH值、S_2O_8^(2-)浓度、共存离子Cl-浓度)对Fe^0/^(-1)-微生物燃料电池(MFC)体系中结晶紫降解率及产电性能的影响。结果表明,阴极液初始pH值降低和^(-1)浓度增加有利于体系中结晶紫的降解和最大功率密度的提高,阴极液共存离子Cl^-浓度的增加会阻碍结晶紫的降解,最大功率密度随Cl-浓度增加呈现先增加后降低的趋势。综合体系中结晶紫的降解率和最大功率密度,在温度为30℃,Fe^0投加量为1 mmol·L^(-1),阴极液初始pH值为3、^(-1)浓度为2 mmol·L^(-1)时,180 min后浓度为0.16 mmol·L^(-1)的结晶紫降解率达到95.62%,最大功率密度为637.245 m W·m^(-3),内阻约为400Ω。降解过程符合一级动力学方程。
Zero-valent iron( ZVI) was used as catalyst for persulfate oxidation of crystal violet to elucidate the role played by the activating sodium persulfate in generation of sulfate radicals. The influences of initial pH,and persulfate and chloride ion concentrations in the catholyte on the crystal violet degradation and power production were studied. The result indicated that crystal violet degradation rate and power production both improved with decreasing pH and increasing persulfate concentration,while increasing chloride concentration hindered the degradation process. The maximum power density initially increased and then decreased with increasing chloride concentration. The crystal violet degradation rate in Fe0/ -1-MFC system with an initial concentration of 0. 16mmol·L-1reached 95. 62% within 180 min under the optimum conditions( temperature = 30 ℃,ZVI concentration = 1 mmol·L-1,initial pH = 3,and persulfate concentration = 2 mmol·L-1). The maximum power density and internal resistance were 637. 245 m W·m-3 and 400 Ω,respectively. The degradation process of crystal violet conformed to first-order kinetics.
出处
《环境工程学报》
CAS
CSCD
北大核心
2016年第7期3715-3721,共7页
Chinese Journal of Environmental Engineering