期刊文献+

基于移动激光扫描点云特征图像和SVM的建筑物立面半自动提取方法 被引量:34

A Method for Semiautomated Segmentation of Building Facade from Mobile Laser Scanning Point Cloud Based on Feature Images and SVM
原文传递
导出
摘要 建筑物立面是城市地物的重要组成部分,而移动激光扫描是获取城市地物三维信息的重要手段之一。本文提出了一种基于移动激光扫描点云的建筑物立面半自动提取算法。该方法首先构建研究区水平网格;然后计算局部点云几何特征,并且将特征投影到水平网格生成点云特征图像;接着基于支持向量机(Support Vector Machine,SVM)对建筑物立面网格进行粗提取;最后使用网格属性(形状系数、网格面积、最大高程)对粗提取结果进行过滤,并将结果反投影到三维空间中得到精确的建筑物立面。以卡内基梅隆大学的移动激光扫描点云进行试验后表明,本算法能够较好地提取出建筑物立面,提取精度为84%,召回率为90%,数据修正后精度为88%,召回率为91%。通过与现有算法对比,本文提出的算法具有较高精度。 Building facade is an important component of urban street features. Delineating and representing the building facade would benefit the urban building design and planning. As a new mobile mapping system, Mobile Laser Scanning(MLS) allows the quick and cost-effective acquisition of close-range three-dimensional(3D) measurements of urban street objects. This paper presents a semiautomated segmentation method for identifying the building facades from MLS point clouds data. The method consists of three major steps:(1) a horizontal grid system is built for the study area, and the multidimensional geometric features of 3D point clouds data, including the normal vector feature, omni-variance feature, geometric dimensionality of α1, α2 and α3, and eigen-entropy feature, are defined and calculated. Then, a feature image is created after projecting these features to the horizontal grid.(2) Building facades are roughly extracted using Support Vector Machine(SVM).(3) The rough extraction result is filtered according to the characteristics of grid including the shape coefficient, grid′s area, and the largest elevation. Two MLS point cloud datasets of Carnegie Mellon University(CMU) database were used in this study to estimate the feasibility and effectiveness of the method. It was found that this method performs well in extracting the building facades. The precision of the results is 0.88, and its recall rate is0.90, which is better than some existing methods. Our method provides an effective tool for extracting building facades of streets from MLS point cloud data.
出处 《地球信息科学学报》 CSCD 北大核心 2016年第7期878-885,共8页 Journal of Geo-information Science
基金 国家自然科学基金项目(41471449) 上海市自然科学基金项目(14ZR1412200) 中央高校基本科研业务费专项资金项目
关键词 移动激光扫描系统 建筑物立面提取 点云特征图像 支持向量机(SVM) Mobile Laser Scanning system building facades segmentation feature images Support Vector Machine(SVM)
  • 相关文献

参考文献5

二级参考文献64

  • 1史文中,李必军,李清泉.基于投影点密度的车载激光扫描距离图像分割方法[J].测绘学报,2005,34(2):95-100. 被引量:89
  • 2蒋晶珏,张祖勋,明英.复杂城市环境的机载Lidar点云滤波[J].武汉大学学报(信息科学版),2007,32(5):402-405. 被引量:38
  • 3吴芬芳,李清泉,熊卿.基于车载激光扫描数据的目标分类方法[J].测绘科学,2007,32(4):75-77. 被引量:25
  • 4KRAUS K, PFEIFER N. Determination of Terrain Models in Wooded Areas with Airborne Laser Scanner Data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 1998, 53 (4): 193-203. 被引量:1
  • 5AXELSSON P. DEM Generation from Laser Scanner Data Using Adaptive TIN Models[C]//International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. 33(134), Amsterdam: ISPRS, 2000: 110-117. 被引量:1
  • 6SITHOLE G, VOSSELMAN G. Experimental Comparison of Filter Algorithms for Bareearth Extraction from Airborne Laser Scanning Point Clouds[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2004, 59(1 2): 85-101. 被引量:1
  • 7MAAS H G, VOSSELMAN G. Two Algorithms for Extracting Building Models from Raw Laser Altimetry Data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 1999, 54(2-3): 153-163. 被引量:1
  • 8HAALA N, BRENNER C. Extraction of Buildings and Trees in Urban Environments[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 1999, 54(2-3) : 130-137. 被引量:1
  • 9OVERBY J, BODUM L, KJEMS E, et al. Automatic 3D Building Reconstruction from Airborne Laser Scanning and Cadastral Data Using Hough Transform[C]//International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 35(B3). Istanbul: ISPRS, 2004: 296-301. 被引量:1
  • 10ZHAO H, SHIBASAKI R. Updating Digital Geographic Database Using Vehicle-borne Laser Scanners and Line Cameras[C]//International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 35 (B3). Istanbul: ISPRS, 2004: 111-119. 被引量:1

共引文献2500

同被引文献319

引证文献34

二级引证文献114

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部