期刊文献+

On the GF(p) Linear Complexity of Hall's Sextic Sequences and Some Cyclotomic-Set-Based Sequences

On the GF(p) Linear Complexity of Hall's Sextic Sequences and Some Cyclotomic-Set-Based Sequences
原文传递
导出
摘要 Klapper(1994) showed that there exists a class of geometric sequences with the maximal possible linear complexity when considered as sequences over GF(2), but these sequences have very low linear complexities when considered as sequences over GF(p)(p is an odd prime). This linear complexity of a binary sequence when considered as a sequence over GF(p) is called GF(p) complexity. This indicates that the binary sequences with high GF(2) linear complexities are inadequate for security in the practical application, while,their GF(p) linear complexities are also equally important, even when the only concern is with attacks using the Berlekamp-Massey algorithm [Massey, J. L., Shift-register synthesis and bch decoding, IEEE Transactions on Information Theory, 15(1), 1969, 122–127]. From this perspective, in this paper the authors study the GF(p) linear complexity of Hall's sextic residue sequences and some known cyclotomic-set-based sequences.
出处 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2016年第4期515-522,共8页 数学年刊(B辑英文版)
基金 supported by the National Natural Science Foundation of China(Nos.61202007,U1509213) Top Priority of the Discipline(Information and Communication Engineering)Open Foundation of Zhejiang the Postdoctoral Science Foundation(No.2013M540323) the Outstanding Doctoral Dissertation in Nanjing University of Aeronautics and Astronautics(No.BCXJ 13-17)
关键词 Linear complexity Hall's sextic residues sequence Cyclotomic set 线性复杂度 次序列 Berlekamp-Massey算法 大厅 列集 二进制序列 几何序列 二元序列
  • 相关文献

参考文献2

二级参考文献12

  • 1Menezes A, Van Oorschot P, Vanstone S. Handbook of applied cryptography. Boca Raton, FL, USA: CRC Press, 1997. 被引量:1
  • 2Klapper A. The vulnerability of geometric sequences based on fields of odd characteristic. Journal of Cryptology, 1994, 7( 1 ): 33-51. 被引量:1
  • 3Chan A H, Games R A. On the linear span of binary sequences obtained from fmite geometries. Advances in Cryptology: Proceedings of the 4th Annual International Cryptology Conference (Crypto''86), Aug 11-15, 1986, Santa Barbara, CA, USA. LNCS 263. Berlin, Germany: Springer-Verlag, 1987:405-417. 被引量:1
  • 4Shamir A. On the generation of cryptographically strong pseudorandom sequences. ACM Transactions on Computer Systems, 1983, 1 ( 1 ): 38-44. 被引量:1
  • 5Blum L, Blum M, Shub M. A simple unpredictable pseudo-random number generator. SIAM Journal on Computing, 1986, 15(2): 364-383. 被引量:1
  • 6Cusick T W. Properties of the x^2 mod N pseudorandom number generator. IEEE Transactions on Information Theory, 1995, 41(4): 1155-1159. 被引量:1
  • 7Friedlander J B, Pomerance C, Shparlinski I E. Period of the power generator and small values of Carmuchael's function. Mathematics of Computation, 2001, 70:1591-1605. 被引量:1
  • 8Blake I F, Gao S H, Mullin R C. Explicit factorization of x^2^k + 1 over Fp with prime p=3 mod 4. Applicable Algebra in Engineering, Communication and Computing, 1993, 4(2): 89-94. 被引量:1
  • 9Kaida T, Uehara S, Imamura K. An algorithm for the k-error linear complexity of sequences over GF(pm) with period p., p a prime. Information and Computation, 1999, 151(1/2): 134-147. 被引量:1
  • 10Xiao G Z, Wei S M, Lam K Y, et al. A fast algorithm for determining the linear complexity of a sequence with period p^n over GF(q). IEEE Transactions on Information Theory, 2000, 46(6): 2203-2206. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部