期刊文献+

固相法制备单晶LiSn_2(PO_4)_3锂离子电池负极

Synthesis of Rhombohedral Structure LiSn_2(PO_4)_3 Single Crystalline as Anode Material for Lithium-ion Battery
原文传递
导出
摘要 采用高温固相法合成了可用于锂离子电池负极的斜六方晶系的单晶LiSn_2(PO_4)_3.通过XRD和TEM手段确定了LiSn_2(PO_4)_3的斜六方晶系单晶结构,SEM手段观察得出LiSn_2(PO_4)_3粒径为200-300 nm.相比锡基氧化物纳米颗粒,斜六方晶系的单晶LiSn_2(PO_4)_3电极在充放电过程容量保持率更高.电化学性能测试结果表明,电极在100 m A g-1恒电流密度充放电时,LiSn_2(PO_4)_3电极充放电循环50次后容量保持为301.4 m A h g-1,远高于Sn O2纳米颗粒电极. Rhombohedral structure LiSn2(PO4)3was fabricated by solid-state method and applied in anode material of lithium-ion battery. The rhombohedral structure was confirmed by XRD and TEM technique. The morphology of LiSn2(PO4)3particle was investigated by SEM method. Compared with Sn O2nano-particle electrode, LiSn2(PO4)3electrode exhibits better cycling performance and rate capacity. When the electrode was charged/discharged at current density of 100 m A/g, LiSn2(PO4)3electrode could retain 301.4m Ah/g after 50 cycles while Sn O2nano-particle electrode was not much left.
出处 《南开大学学报(自然科学版)》 CAS CSCD 北大核心 2016年第3期12-17,共6页 Acta Scientiarum Naturalium Universitatis Nankaiensis
基金 天津市重点基金项目(14JCZDJC32400) 新型高性能二次电池的基础研究(2015CB251100)
关键词 锂离子电池 锡基负极 固相法 单晶 lithium-ion battery tin-based anode solid-state method single crystalline
  • 相关文献

参考文献15

  • 1Gao T, Huang K, Qi X, et al. Free-standing SnO2 nanoparticles @ graphene hybrid paper for advanced lithium- ion batteries[J]. Ceramics International, 2014, 40(5): 6 891-6 897. 被引量:1
  • 2Jiang L, Sun G, Zhou Z, et al. Size-controllable synthesis of monodispersed SnO2 nanoparticles and application in electrocatalysts[J]. The Journal of Physical Chemistry B, 2005, 109(18): 8 774-8 778. 被引量:1
  • 3Liu H. SnO2 sheet/graphite composite as anode material with improved electrochemical performance for lithium- ion batteries[J]. Journal of Sol-Gel Science and Technology, 2014, 72(3): 644-647. 被引量:1
  • 4Bhaskar A, Deepa M, Rao T N. Size-controlled SnO2 hollow spheres via a template free approach as anodes for lithium ion batteries[J]. Nanoscale, 2014, 6(18): 10 762-10 771. 被引量:1
  • 5Martinez A, Rojo J M, Iglesias J E, et al. Formation process of LiSn2(PO4)3, a monoclinically distorted NASI- CON-type stmcture[J]. Chemistry of materials, 1994, 6(10): 1 790-1 795. 被引量:1
  • 6Luo J Y, Xia Y Y. Aqueous lithium-ion battery LiTi2(PO4)3/LiMn204 with high power and energy densities as well as superior cycling stability[J]. Advanced Functional Materials, 2007, 17(18): 3 877-3 884. 被引量:1
  • 7Francisco B E, Stoldt C R, M'Peko J C. Lithium-ion trapping from local structural distortions in sodium super ionic conductor (NASICON) electrolytes[J].Chemistry of Materials, 2014, 26(16): 4 741-4 749. 被引量:1
  • 8Norhaniza R, Subban R H Y, Mohamed N S. Effects of sintering temperature on the structure and conductivity of LiSn2P3O12 prepared by mechanical milling method[C]//Advaneed Materials Research, 2010, 129: 338-342. 被引量:1
  • 9Hu P, Ma J, Wang T, et al. NASICON-structured NaSn2(PO4)3 with excellent high-rate properties as anode material for lithium ion batteries[J]. Chemistry of Materials, 2015, 27(19): 6 668-6 674. 被引量:1
  • 10单忠强,位辰先,陈政,吴峰,高学平.柠檬酸溶胶-凝胶法合成嵌锂电极材料[J].南开大学学报(自然科学版),2006,39(2):89-93. 被引量:2

二级参考文献7

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部