期刊文献+

Eventual Positivity of Hermitian Polynomials and Integral Operators 被引量:1

Eventual Positivity of Hermitian Polynomials and Integral Operators
原文传递
导出
摘要 Quillen proved that if a Hermitian bihomogeneous polynomial is strictly positive on the unit sphere, then repeated multiplication of the standard sesquilinear form to this polynomial eventually results in a sum of Hermitian squares. Catlin-D'Angelo and Varolin deduced this positivstellensatz of Quillen from the eventual positive-definiteness of an associated integral operator. Their arguments involve asymptotic expansions of the Bergman kernel. The goal of this article is to give an elementary proof of the positive-definiteness of this integral operator.
作者 Colin TAN
出处 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2016年第1期83-94,共12页 数学年刊(B辑英文版)
关键词 ASYMPTOTICS POLYNOMIAL POSITIVITY 埃尔米特多项式 积分算子 极性 初等证明 双线性形式 单位球面 重复繁殖 渐近展开
  • 相关文献

参考文献11

  • 1Artin, E., Uber die Zerlegung Definiter Funktionen in Quadrate, Abh. Math. Sem. Univ., 5(1), 1927, 100-115 (in German). 被引量:1
  • 2Axler, S., Bourdon, P. and Ramey, W., Harmonic Function Theory, 2nd edition, Springer-Verlag, New York, 2001. 被引量:1
  • 3Catlin, D. W. and D'Angelo, J. P., Positivity conditions for bihomogeneous polynomials, Math. Res. Left., 4, 1997, 555-567. 被引量:1
  • 4Catlin, D. W. and D'Angelo, J. P., An isometric embedding theorem for holomorphic bundles, Math. Res. Left., 6, 1999, 43-60. 被引量:1
  • 5Knuth, D. E., Two notes on notation, The American Mathematical Monthly, 99(5), 1992, 403-422. 被引量:1
  • 6Putinar, M. and Scheiderer, C., Sums of Hermitian squares on pseudoconvex boundaries, Math. Res. Lett. 17(6), 2010, 1047-1053. 被引量:1
  • 7Quillen, D. G., On the representation of Hermitian forms as sums of squares, Inventiones Math., 5, 1968 237-242. 被引量:1
  • 8Tian, G., On a set of polarized Kahler metrics on algebraic manifolds, J. Diff. Geom., 32, 1990, 99-130. 被引量:1
  • 9To, W. K. and Yeung, S. K., Effective isometric embeddings for certain holomorphic line bundles, J London Math. Soc., 73(2), 2006, 607-624. 被引量:1
  • 10Vaxolin, D., Geometry of Hermitian algebraic functions. Quotients of squared norms, Amer. J. Math., 130 2008, 291-315. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部