期刊文献+

Frobenius-Euler多项式的一些乘积公式及其应用(英文) 被引量:1

Some Formulae of Products of Frobenius-Euler Polynomials With Applications
原文传递
导出
摘要 本文对Frobenius-Euler多项式及Frobenius-Euler数做了进一步的研究.通过应用生成函数方法和求和转换技巧,建立了任意多个Frobenius-Euler多项式以及Frobenius-Euler数乘积的一些新公式.作为应用,一些著名的结果被作为特殊情况得到. In this paper, a further investigation for the Frobenius-Euler polynomials and numbers is performed. Some new formulae of products of any numbers of the Frobenius-Euler polynomials and numbers are established by applying the generating function methods and summation transform techniques. As applications, some well-known results in this direction are derived as special cases.
作者 何圆 余亚辉
出处 《数学进展》 CSCD 北大核心 2016年第4期520-532,共13页 Advances in Mathematics(China)
基金 supported by NSFC(No.11326050,No.11371291) the Foundation for Fostering Talents in KMUST(No.KKSY201307047)
关键词 Bernoulli多项式及Bernoulli数 Euler多项式及Euler数 Frobenius-Euler多项式 及Frobenius-Euler数 组合等式 Bernoulli polynomials and numbers Euler polynomials and numbers Frobenius-Euler polynomials and numbers combinatorial identities
  • 相关文献

参考文献27

  • 1Andrews, G.E., Euler's pentagonal number theorem, Math. Mag., 1983, 56(5): 279-284. 被引量:1
  • 2Apostol, T.M., Introduction to Analytic Number Theory, New York: Springer-Verlag, 1976. 被引量:1
  • 3Bayad, A. and Raouj, A., Reciprocity formulae for multiple Dedekind-Rademacher sums, C. R. Acad. Sci. Paris Set. I, 2011, 349(3/4): 131-136. 被引量:1
  • 4Bayad, A. and Raouj, A., Arithmetic of higher dimensional Dedekind-Rademacher sums, J. Number Theory, 2012, 132(2): 332-347. 被引量:1
  • 5Beck, M., Dedekind cotangent sums, Acta Arith., 2003, 109(2): 109-130. 被引量:1
  • 6Bell, J., A summary of Euler's work on the pentagonal number theorem, Arch. Hist. Exact Sci., 2010, 64(3): 301-373. 被引量:1
  • 7Berndt, B.C. and Yeap, B.P., Explicit evaluations and reciprocity theorems for finite trigonometric sums, Adv. Appl. Math., 2002, 29(3): 358-385. 被引量:1
  • 8Carlitz, L., A note on generalized Dedekind sums, Duke Math. J., 1954, 21(3): 399-403. 被引量:1
  • 9Carlitz, L., The product of two Eulerian polynomials, Math. Mag., 1963, 36(1): 37-41. 被引量:1
  • 10Cohen, H., Number Theory, Volume II, Analytic and Modern Tools, Grad. Texts in Math., Vol. 240, New York: Springer-Verlag, 2007. 被引量:1

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部