期刊文献+

初始pH值和物料配比对高温混料厌氧发酵进程的影响 被引量:10

Effect of initial p H and mixture ratio on thermophilic anaerobic co-digestion of swine manure and maize stalk
原文传递
导出
摘要 为了研究高温条件下初始p H对厌氧发酵进程的影响,以猪粪、玉米秸秆为发酵原料,设置3种比例(干物质质量比30∶70、50∶50、70∶30)下6个水平(6.0、6.5、7.0、7.5、8.0的初始p H值以及一个不调控初始p H的处理作为对照)进行批次发酵试验.结果表明,初始p H值和物料配比都会显著影响厌氧发酵过程的启动时间和甲烷产量.当初始p H值为7.0时,VS降解率趋于稳定.COD去除率随着粪便含量的增加而逐渐降低.高温猪粪玉米秸秆混合发酵最佳挥发性脂肪酸(VFA)/碱度比值范围为0.05~0.3;猪粪可以作为一种缓冲材料,适量添加可增大消化系统的缓冲能力.通过建模优化,预测出当初始p H值为6.95、猪粪/玉米秆为70∶30时,可得到每克挥发性固体最大理论单位甲烷产量169.22 m L·g-1. The thermophilic anaerobic digestion of swine manure and maize stalk as main substrates were conducted in batch and the effect of initial p H was investigated. Five different initial p H levels( 6.0,6.5,7.0,7.5 and 8.0) and one uncontrolled level were tested with three manure / stalk ratios( 30∶70,50∶50,and 70∶30). Both initial p H and mixture ratio significantly affected the lag phase and methane yield from anaerobic digestion. Results showed that( COD) removal rate decreased with the increase of manure content. When the initial p H was 7.0,the degradation rate of volatile solid( VS) was stable. The optimum ratio of volatile fatty acids( VFA) to alkalinity for thermophilic digestion of swine manure and maize stalk was 0.05 ~ 0.3. Adding manure increased the buffering capacity of fermentation system. The theoretical maximum methane yield was 169.22 m L·g-1,when the initial p H was 6.95 and the manure / stalk ratio was 70∶30.
出处 《环境科学学报》 CAS CSCD 北大核心 2016年第7期2571-2579,共9页 Acta Scientiae Circumstantiae
基金 西北农林科技大学博士科研启动基金(No.Z109021403) 中央高校基本科研业务费(No.Z109021511)~~
关键词 高温厌氧发酵 初始p H值 粪秆比例 最适条件 thermophilic anaerobic digestion initial p H manure / stalk ratio optimum condition
  • 相关文献

参考文献41

  • 1Aitken M D, Mullennix R W. 1992.Another look at thermophilic anaerobic digestion of wastewater sludge[J]. Water Environment Research, 64 (7): 915–919. 被引量:1
  • 2Alvarez R, Villca S, Liden G. 2006.Biogas production from llama and cow manure at high altitude[J]. Biomass and Bioenergy, 30 (1): 66–75. 被引量:1
  • 3Babel S, Fukushi K, Sitanrassamee B. 2004.Effect of acid speciation on solid waste liquefaction in anaerobic acid digester[J]. Water Research, 38 : 2417–2423. 被引量:1
  • 4Buhr H O, Andrews J F. 1977.The thermophilic anaerobic digestion process[J]. Water Research, 11 (2): 129–143. 被引量:1
  • 5Chen X, Yan W, Sheng K, et al. 2014.Comparison of high-solids to liquid anaerobic co-digestion of food waste and green waste[J]. Bioresource Technology, 154 : 215–221. 被引量:1
  • 6陈一,周君薇,闻岳,周琪.pH对生物质同步水解产酸的影响[J].环境污染与防治,2011,33(6):11-14. 被引量:2
  • 7Chen Y R, Varel V H, Hashimoto A G. 1980. Effect of temperature on methane fermentation kinetics of beef-cattle manure[C]//Biotechnol Bioeng Symp, 10: 325-339. 被引量:1
  • 8Cooney C L, Wise D L. 1975.Thermophilic anaerobic digestion of solid waste for fuel gas production[J]. Biotechnology and Bioengineering, 17 (8): 1119–1135. 被引量:1
  • 9Cuetos M J, Fernández C, Gómez X, et al. 2011.Anaerobic co-digestion of swine manure with energy crop residues[J]. Biotechnology and Bioprocess Engineering, 16 (5): 1044–1052. 被引量:1
  • 10De Bere L. 2000.Anaerobic digestion of solid waste: state-of-the-art[J]. Water Science and Technology, 41 (3): 283–290. 被引量:1

二级参考文献63

共引文献110

同被引文献91

引证文献10

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部