期刊文献+

Theoretical Study on Gas Phase Reactions of OH Hydrogen-Abstraction from Formyl Fluoride with Different Catalysts

气相中自由基OH在不同催化剂下对甲酰氟FCHO进行提氢反应的理论性研究
下载PDF
导出
摘要 The mechanisms and kinetics of the gas phase reactions that the hydrogen atom in formyl fluoride (FCHO) abstracted by OH in the presence of water, formic acid (FA), or sulfuric acid (SA) are theoretically investigated at the CCSD(T)/6-311++G(3df, 3pd)//MO6-2X/6- 311++G(3df, 3pd) level of theory. The calculated results show that the barriers of the transition states involving catalysts are lowered to -2.89, -6.25, and -7.76 kcal/mol from 3.64 kcal/mol with respect to the separate reactants, respectively, which reflects that those catalysts play an important role in reducing the barrier of the hydrogen abstraction reaction of FCHO with OH. Additionally, using conventional transition state theory with Eckart tun- neling correction, the kinetic data demonstrate that the entrance channel X…FCHO+OH (X=H2O, FA, or SA) is significantly more favorable than the pathway X…OH+FCHO. More- over, the rate constants of the reactions of FCHO with OH radical with H2O, FA, or SA introduced are computed to be smaller than that of the naked OH+FCHO reaction because the concentration of the formed X…FCHO or X…OH complex is quite low in the atmosphere.
出处 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2016年第3期325-334,I0001,共11页 化学物理学报(英文)
关键词 Formyl fluoride Hydrogen abstraction Reaction mechanisms Rate constants 甲酰氟FCHO 提氢反应 反应机理 速率常数
分类号 O [理学]
  • 相关文献

参考文献79

  • 1A. S. Hasson, C. M. Moore, and I. W. M. Smith, Int. J. Chem. Kinet. 30, 541 (1998). 被引量:1
  • 2E. Sanhueza and J. Heicklen, J. Phys. Chem. 79, 7 (1975). 被引量:1
  • 3J. Sehested and T. J. Walangton, Environ. Sci. Technol. 27, 146 (1993). 被引量:1
  • 4G. L. Manney, L. Froidevaux, J. W. Waters, R. W. Zurek, W. G. Read, L. S. Elson, J. B. Kumer, J. L. Mer- genthaler, A. E. Roche, A. O'Neill, R. S. Harwood, I. Mackenzie, and R. Swinbank, Nature 370, 429 (1994). 被引量:1
  • 5P. A. Newman, L. D. Oman, A. R. Douglass, E. L. Fleming, S. M. Frith, M. M. Hurwitz, S. R. Kawa, C. H. Jackman, N. A. Krotkov, E. R. Nash, J. E. Nielsen, S. Pawson, R. S. Stolarski, and G. J. M. Velders, Atmos. Chem. Phys. 9, 2113 (2009). 被引量:1
  • 6G. L. Manney, M. L. Santee, M. Rex, N. J. Livesey, M. C. Pitts, P. Veefkind, E. R. Nash, I. Wohltmann, R. Lehmann, L. Froidevaux, L. R. Poole, M. R. Schoeberl, D. P. Haffner, J. Davies, V. Dorokhov, H. Gernandt, B. Johnson, R. Kivi, E. Kyro, N. Larsen, P. F. Lev- elt, A. Makshtas, C. T. McElroy, H. Nakajima, M. C. Parrondo, D. W. Tarasick, P. yon der Gathen, K. A. Walker, and N. S. Zinoviev, Nature 478, 469 (2011). 被引量:1
  • 7T. J. Wallington, M. D. Hurley, J. C. Ball, and E. W. Kaiser, Environ. Sci. Technol. 26, 1318 (1992). 被引量:1
  • 8J. Hoign6 and H. Bader, Water Res. 10, 377 (1976). 被引量:1
  • 9N. Mora-Diez, J. R. Alvarez-Idaboy, and R. J. Boyd, J. Phys. Chem. A 105, 9034 (2001). 被引量:1
  • 10B. S. Jursic, J. Mol. Struct: THEOCHEM 434, 53 (1998). 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部