期刊文献+

I-VLDNS:一种改进的线性判别子空间模式识别算法 被引量:1

I-VLDNS:AN IMPROVED LINEAR DISCRIMINATIVE SUBSPACE PATTERN RECOGNITION ALGORITHM
下载PDF
导出
摘要 针对现有模式判别分析方法中普遍存在的子空间优化与"小样本"问题,首先剖析总体、类内以及类间三种散布矩阵的零空间的物理含义,深入阐释有效零空间与有效线性判别零空间核心原理;其次,研究始空间中总体、类间散布矩阵与有效零空间、有效值域空间上的总体、类间散布矩阵关于特征值与特征向量之间的关联关系,并且获取类内散布矩阵零空间、值域空间上关于Fisher线性判别率的关键结论;最后,基于有效线性判别零空间理论,设计出一种改进的线性判别子空间模式识别算法,即I-VLDNS。通过相关数据集模拟实验表明,I-VLDNS算法在模式识别分析性能、精确度以及鲁棒性上均得到进一步优化与提高。 In light of the problems of subspace optimisation and 'small sample size'commonly existed in current pattern discriminative analysis methods,in this paper we first analyse the physical meaning of null-space of total scatter matrix,between-class scatter matrix and within-class scatter matrix,and thoroughly explain the core principles of valid null-space and valid linear discriminative null-space. Secondly,we study the association relationship of eigenvalues and eigenvectors with regard to the total scatter matrixes and between-class scatter matrixes of both the original space and the valid null-space and valid range-space,and obtain the key conclusions about Fisher linear discriminative probability of within scatter matrix null-space and within scatter matrix range-space. Finally,based on effective linear discriminative null-space theory,we design an improved linear discriminative subspace pattern recognition algorithm( I-VLDNS). It is demonstrated through correlated dataset simulation experiments that the I-VLDNS gains further optimisation and improvement in analysis performance of pattern recognition,accuracy and robustness.
出处 《计算机应用与软件》 CSCD 2016年第7期172-175,208,共5页 Computer Applications and Software
基金 国家自然科学基金项目(70861001) 广西高等学校立项科研项目(2013LX095)
关键词 模式识别 线性判别分析 有效零空间 值域空间 I-VLDNS Pattern recognition Linear discriminative analysis Valid null-space Range-space I-VLDNS
  • 相关文献

参考文献4

二级参考文献40

  • 1陈才扣,杨静宇,杨健.基于组合子空间的最优特征抽取及人脸识别[J].信号处理,2004,20(6):609-612. 被引量:4
  • 2[1]Wilks S S. Mathematical Statistics. New York: Wiley Press, 1962. 577~578 被引量:1
  • 3[2]Duda R, Hart P. Pattern Classification and Scene Analysis. New York: Wiley Press, 1973 被引量:1
  • 4[3]Daniel L Swets, John Weng. Using discriminant eigenfeatures for image retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996,18(8): 831~836 被引量:1
  • 5[4]Belhumeur P N. Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 711~720 被引量:1
  • 6[5]Cheng Jun Liu, Harry Wechsler. A shape- and texture-based enhanced Fisher classifier for face recognition. IEEE Transactions on Image Processing, 2001, 10(4): 598~608 被引量:1
  • 7[6]Foley D H, Sammon J W Jr. An optimal set of discriminant vectors. IEEE Transactions on Computer, 1975, 24(3): 281~289 被引量:1
  • 8[7]Tian Q. Image classification by the Foley-Sammon transform. Optical Engineering, 1986, 25(7): 834~839 被引量:1
  • 9[8]Duchene J, Leclercq S. An optimal Transformation for discriminant and principal component analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1988,10(6): 978~983 被引量:1
  • 10[9]Zhong Jin, Yang J Y, Hu Z S, Lou Z. Face Recognition based on uncorrelated discriminant transformation. Pattern Recognition, 2001,33(7): 1405~1416 被引量:1

共引文献97

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部