摘要
The presence of the Kerguelen Plateau and surrounding bathymetric features has a strong influence on the persistently eastward flowing Antarctic Circumpolar Current (ACC), resulting in enhancement of surface chlorophyll-a (Chl-α) in the downstream section of the plateau along the polar front (PF). The phenomenon is reported in this paper as the island mass effect (IME). Analysis of climatological Chl-a datasets from Aqua- Moderate Resolution Imaging Spectroradiometer (Aqua- MODIS) and Sea-viewing Wide Field-of-view Sensor (SeaWiFS) shows distinct bloomy plumes (Chl-α 〉 0.5 mg/m3) during austral spring-summer spreading as far as -1800 km offshore up to 98°E along the downstream of the north Kerguelen Plateau (NKP). Similar IME phenomena is apparent over the south Kerguelen Plateau (SKP) with the phytoplankton bloom extending up to 96.7°E, along the southern boundary of ACC. The IME phenomena are pronounced only during austral spring-summer period with the availability of light and sedimentary source of iron from shallow plateau to sea surface that fertilizes the mixed layer. The NKP bloom peaks with a maximum areal extent of 1.315 million km2 during December, and the SKP bloom peaks during January with a time lag of one month. The blooms exist for at least 4 months of a year and are significant both as the base of regional food web and for regulating the biogeochemical cycle in the Southern Ocean. Even though the surface water above the Kerguelen Plateau is rich in Chl-a, an exception of an oligotrophic condition dominated between NKP and SKP due to apparent intrusion of iron limited low phytoplankton regime waters from the Enderby basin through the north- eastward Fawn Trough Current.
The presence of the Kerguelen Plateau and surrounding bathymetric features has a strong influence on the persistently eastward flowing Antarctic Circumpolar Current (ACC), resulting in enhancement of surface chlorophyll-a (Chl-α) in the downstream section of the plateau along the polar front (PF). The phenomenon is reported in this paper as the island mass effect (IME). Analysis of climatological Chl-a datasets from Aqua- Moderate Resolution Imaging Spectroradiometer (Aqua- MODIS) and Sea-viewing Wide Field-of-view Sensor (SeaWiFS) shows distinct bloomy plumes (Chl-α 〉 0.5 mg/m3) during austral spring-summer spreading as far as -1800 km offshore up to 98°E along the downstream of the north Kerguelen Plateau (NKP). Similar IME phenomena is apparent over the south Kerguelen Plateau (SKP) with the phytoplankton bloom extending up to 96.7°E, along the southern boundary of ACC. The IME phenomena are pronounced only during austral spring-summer period with the availability of light and sedimentary source of iron from shallow plateau to sea surface that fertilizes the mixed layer. The NKP bloom peaks with a maximum areal extent of 1.315 million km2 during December, and the SKP bloom peaks during January with a time lag of one month. The blooms exist for at least 4 months of a year and are significant both as the base of regional food web and for regulating the biogeochemical cycle in the Southern Ocean. Even though the surface water above the Kerguelen Plateau is rich in Chl-a, an exception of an oligotrophic condition dominated between NKP and SKP due to apparent intrusion of iron limited low phytoplankton regime waters from the Enderby basin through the north- eastward Fawn Trough Current.