摘要
研究GA-凸函数的Hermite-Hadamard型不等式和Fejér型不等式决定的差值。对二阶可微的GA-凸函数,给出这些差值的上下界。对一阶可微的GA-凸函数,给出由Hermite-Hadamard型不等式和Fejér型不等式构成的函数的单调性的充分条件。
The differences generated by Hermite-Hadamard type inequality and Fejér type inequality for GA-convex functions are considered. Upper and lower bounds of the differences for twice differentiable GA-convex functions are obtained. The sufficient conditions on monotonicity of functions generated by Hermite-Hadamard type inequality and Fejér type inequality for differentiable GA-convex functions are given.
出处
《贵州师范大学学报(自然科学版)》
CAS
2016年第3期42-47,共6页
Journal of Guizhou Normal University:Natural Sciences