期刊文献+

具有分红、流动储备金和利率的风险模型的绝对破产 被引量:1

A Risk Model with Credit and Debit Interests,Liquid Reserves and Dividends Under Absolute Ruin
下载PDF
导出
摘要 建立了阈值分红策略下具有流动储备金、投资利率和贷款利率的复合泊松风险模型.利用全概率公式和泰勒展式,推导出了该模型的Gerber-Shiu函数和绝对破产时刻的累积分红现值期望满足的积分-微分方程及边界条件,借助Volterra方程,给出了Gerber-Shiu函数的解析表达式. This paper studied the compound Poisson risk model with liquid reserves,credit interest and debit interest in the presence of a threshold dividend strategy.By the total law of probability and Taylor’s expansion,we first obtained the integro-differential equations with boundary conditions satisfying the Gerber-Shiu function and presented the closed form expressions for the Gerber-Shiu function.Secondly,we derived the integro-differential equations with boundary conditions satisfying the expected discounted present value of all dividends until absolute ruin by employing Volterra equations.
作者 张燕 赵培标
出处 《经济数学》 2016年第2期15-22,共8页 Journal of Quantitative Economics
关键词 保险数学 GERBER-SHIU函数 积分—微分方程 分红 流动储备金 insurance mathematics Gerber-Shiu function integro-differential equation dividend liquid reserves
  • 相关文献

参考文献12

  • 1Kalashnikov V, Konstantinides, D. Ruin under interest force and subexponential claims: a simple treatment[J]. Insurance: Mathematics and Economics, 2000 (27) : 145-149. 被引量:1
  • 2Cai J, Dcikson D C M. On the expected discounted penalty function at ruin of a surplus process with interest[J]. Insur- ance.. Mathematics and Economics, 2002 (3): 389-404. 被引量:1
  • 3Gao S , Liu Z M. The perturbed compound Poisson risk model with constant interest and a threshold dividend strategy[J]. Journal of computational and applied mathematics, 2010 (233) :2181-2188. 被引量:1
  • 4Li S, Lu Y. On the generalized Gerber - Shiu function for surplus processes with interest[J]. Insurance.. Mathematics and Economics, 2013, 52(1) : 127-134. 被引量:1
  • 5Embrechts, P, Schmidli H. Ruin estimation for a general in- surance risk model[J]. Advances in Applied Probability, 1994 (26): 404 - 422. 被引量:1
  • 6Cai J , Feng R , Willrnot G. Analysis of the compound Pois- son surplus model with liquid reserves, interest and dividends [J]. AstinBulletin, 2009, 39(1): 225-247. 被引量:1
  • 7Lin X, Pavlova K P. The compound Poisson risk model with a threshold dividend strategy[J]. Insurance: Mathematics and Economics, 2006 (38).. 57-80. 被引量:1
  • 8Zhang Z, Yang H, Li S. The perturbed compound Poisson risk model with two-sided jumps. Journal of computational and applied mathematics, 2010(233) : 1773-1784. 被引量:1
  • 9温玉珍,尹传存.一类混合分红策略下的广义Erlang(n)风险模型[J].中国科学:数学,2014,44(10):1111-1122. 被引量:4
  • 10Cai, J. On the time value of absolute ruin with debit interest [J]. Advances in Applied Probability, 2007, 39 (2): 343- 359. 被引量:1

二级参考文献17

  • 1Lin X, Willmot G E, Drekic S. The classical risk model with a constant dividend barrier: Analysis of the Gerber-Shiu discounted penalty function. Insurance Math Econom, 2003, 33:551-566. 被引量:1
  • 2Yuen K C, Yin C. On optimality of the barrier strategy for a general Levy risk process. Math Comput Modelling, 2011, 53:1700-1707. 被引量:1
  • 3Jeanblanc-Picqu@ M, Shiryaev A N. Optimization of the flow of dividends. Russian Math Surveys, 1995, 50:257-277. 被引量:1
  • 4Asmussen S, Taksar M. Controlled diffusion models for optimal dividend pay-out. Insurance Math Econom, 1997, 20: 1-15. 被引量:1
  • 5Ng A C Y. On a dual model with a dividend threshold. Insurance Math Econom, 2009, 44:315-324. 被引量:1
  • 6Wan N. Dividend payments with a threshold strategy in the compound Poisson risk model perturbed by diffusion Insurance Math Econom, 2007, 40:509-523. 被引量:1
  • 7AIbrecher H, Batescu A L, Landriault D. On the dual risk model with tax payments. Insurance Math Econom, 2008 42:1086-1094. 被引量:1
  • 8Gerber H U, Shiu E S W. On the time value of ruin. N Am Actuar J, 1998, 2:48 78. 被引量:1
  • 9Fang Y, Wu R. Optimal dividends in the Brownian motion risk model with interest. J Comput Appl Math, 2009, 229 145 -151. 被引量:1
  • 10Lin X, Pavlova K P. The compound Poisson risk model with a threshold dividend strategy. Insurance Math Econom 2006. 38:57-80. 被引量:1

共引文献3

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部