期刊文献+

关于二阶反对称张量及其对偶矢两者间正向反向关系问题的注记

A Note on the Positive-Way and Negative-Way Problems Concerning the Relations between an Antisymmetric Second Order Tensor and Its Dual Vector
下载PDF
导出
摘要 首先着力阐明,唯独二阶反对称张量Ω才存在着它唯一的对偶矢ω.后者一经找到,立刻可见其表达式实际上就是"ω与Ω之间关系",亦即本文正向关系问题之解.接着处理反向关系问题,又求得我们也想要找的"Ω与ω之间关系".综合以上二结果,便导致总结论——本工作之成果汇总.另外,文末附带将Lurie[2]给出的,同时反映上述Ω与ω两者特征的一对公式作了推广. Firstly,make certain that as to an antisymmetric tensor Ω of order two,there exists exactly one corresponding vector ω,known as the dual vector of Ω. Once the latter has been found,we see that its expression is just the relation between ω and Ω,i.e.,the solution for the positive-way problem. Next,let us treat the negativeway problem so as to get the relation between Ω and ω. Synthesizing both results above,we are led to the general conclusion. In addition,a pair of formulas given by Lurie,which reflect simultaneously the features of both Ω andω,are generalized at the end of this paper.
作者 黄宏炜
出处 《高等数学研究》 2016年第1期31-34,共4页 Studies in College Mathematics
关键词 二阶反对称张量 对偶矢 总结论 Lurie公式之推广 antisymmetric tensor of order two dual vector general conclusion generalization of the Lurie formulas
  • 相关文献

参考文献2

  • 1Ziegler H. An Introduction to Thermomechanics [ M ] , 2nd ed. Amsterdam: North - Holland, 1983:7. 被引量:1
  • 2Lurie A I. Nonlinear Theory of Elasticity [ M ]. Amsterdam : North- Holland, 1990 : 494,507. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部