期刊文献+

超临界二氧化碳动力循环系统及关键部件研究进展 被引量:19

Research Progress on Supercritical Carbon Dioxide Power Cycle System and Its Power Unit
下载PDF
导出
摘要 超临界二氧化碳(SCO_2)动力循环系统具有结构紧凑、成本低、效率高等优点,被认为是新兴能源领域最具应用前景的能量转换系统之一。SCO_2在近临界点附近具有相对大热容量和高密度的特性,可以降低压缩机的耗功;同时透平进口温度相对较低,减少了对换热、冷却及膨胀相变等问题的考虑。但由于工质的物性在近临界点呈现出强烈的非常规性和未知性,从而增加了SCO_2近临界点压缩过程研究等关键技术的难度。结合作者近年相关研究工作,综述了SCO_2循环系统动力部件的研究现状及有关进展,在总结其工作原理的基础上,介绍了工质在超临界工作条件下的特点,着重讨论了SCO_2动力部件设计及数值分析的方法和难点,探讨了动力部件及系统的试验研究方案,指出了未来需要进一步开展的工作。 The supercritical carbon dioxide (SCO2) power cycle has been foreseen as one of the most promising energy conversion systems in the application field of emerging energy due to its compactness, low construction cost and high efficiency at modest temperature. Near the critical point, SCO2 provides unique properties of large heat capacity and high density, which may have a significant benefit in reducing the compressor power consumption. Meanwhile, SCO2 turbine inlet temperature is relatively low, thus reducing the concern for some issues about its heat transfer, cooling, phase transition problem and so on. However, the fluid properties of SCO2 which are close to the critical point exhibit strong variations with highly unconventional characteristics, the study on the key issue of compression near the critical point of CO2 is complicated and extremely difficult. The current research and its progress on SCO2 power cycle system and units are reviewed, combined with authors' related work in recent years. The working principle and the characteristics of the SCO2 power cycle are summarized. Then the focus is placed on the methods and difficulties of the design strategy and numerical analysis for the SCOz power unit. The experimental plans on SCO2 power unit and system are discussed. And finally the related work about the SCOz power unit and system in the future is suggested.
出处 《热力透平》 2016年第2期85-94,共10页 Thermal Turbine
基金 高等学校博士学科点专项科研基金(优先发展领域)(No.20130201130005)
关键词 SCO2动力循环 SCO2动力部件 设计方法 数值分析 试验方案 SCO2 power cycle system SCO2 power unit design method numerical analysis experimentalplan
  • 相关文献

参考文献34

  • 1HEJZLAR P, DOSTAL V, DRISCOLL M J, et al. Assess- ment of gas cooled fast reactor with indirect supercritical COz cycle[J].Nuclear Engineering and Technology, 2006, 38 (2) : 109-118. 被引量:1
  • 2TAKAGI K, MUTO Y, ISHIZUKA T, et al. Research on flow characteristics of supereritieal COz axial compressor blades by CFD analysis[C]//17th International Conference on Nuclear Engineering 2009. Brussels, Belgium~ ASME, 2009 : ICONE17-75626. 被引量:1
  • 3ANGELINO G. Carbon dioxide condensation cycles for pow- er production [J]. Journal of Engineering for Gas Turbines and Power, 1968, 90(3) :287-295. 被引量:1
  • 4FEHER E G. The supercritical thermodynamic power cycle [J]. Energy conversion, 1968, 8(2) :85-90. 被引量:1
  • 5DOSTAL V. A supercritical carbon dioxide cycle for next generation nuclear reactors [D]. Cambridge, Massachusetts Institute of Technology, 2004. 被引量:1
  • 6WRIGHT S A, RADEL R F, VERNON M E, et al. Opera- tion and analysis of a supercritical COz Brayton cycle [R]. California, USA: Sandia National Laboratories, 2010. 被引量:1
  • 7MONJE B, S.kNCHEZ D, SAVILL M, et al. A design strategy for supercritical COz compressors[C]//ASME Tur- bo Expo 2014. Dtisseldorf, Germany: ASME, 2014: GT2014-25151. 被引量:1
  • 8LEE J, LEE J I, AHN Y, et al. Design methodology of su- percritical COz Brayton cycle turbomachineries [C]//ASME Turbo Expo 2012. Copenhagen, Denmark: ASME, 2012: GT2012-68933. 被引量:1
  • 9CHA J E, LEE T H, EOH J H, et al. Development of a su- percritical COz Brayton energy conversion system coupled with a sodium cooled fast reactor [J].Nuclear Engineering and Technology, 2009, 41(8) : 1025-1044. 被引量:1
  • 10WANG Y, GUENETTE G R, HEJZLAR P, et al. Aero- dynamic design of turbomachinery for 300 MWe supercriti- cal carbon dioxide Brayton power conversion system [R]. Cambridge: Massachusetts Institute of Technology, 2005. 被引量:1

同被引文献95

引证文献19

二级引证文献76

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部