期刊文献+

美式期权定价优化模型及隐含波动率计算

An American Option Pricing Optimization Model and Calculation of Implied Volatility
下载PDF
导出
摘要 在无套利假设下,自由边界的Black-Scholes方程可以等价地转化为一个含有微分算子的互补问题,利用传统差分方法离散微分算子并且将波动率视为变量,原问题变为非线性互补问题;进而转化为优化问题,并且加入新的历史价格约束,给出可求解美式期权价格并可计算隐含波动率的优化模型。数值实验表明其有效性。 Under the assumption of arbitrage possibilities, Black-Scholes model is revised as a partial differential complementarity problem; then we derive the nonlinear complementarity model by using the finite difference approximation with uncertain volatility. Furthermore, it can be transformed as an optimization model. In consideration of the influence of historical data, we add a new constraint according to historical option prices to improve the optimization model. Numerical results show the usefulness and rationality of the proposed model.
作者 张艳萍
出处 《长治学院学报》 2016年第2期56-60,共5页 Journal of Changzhi University
关键词 美式期权定价 BLACK-SCHOLES模型 非线性互补模型 历史数据 隐含波动率 American Option pricing Black-Scholes model Nonlinear complementarity model Historical data Implied volatility
  • 相关文献

参考文献7

  • 1Hull J C.张陶伟译.期权、期货和其它衍生产品[M].北京:华夏出版社,2000. 被引量:1
  • 2Black,F.,Sholes,M.The pricing of options and corporate liabilities[J].Journal of Political Economy,1973,81(3):637-654. 被引量:1
  • 3Huang,J.,Pang,J.S.Option pricing and linear complementarity[J].The Journal of Computational Finance,1998,2(3):31-60. 被引量:1
  • 4Kenji Hamatani,Masao Fukushima.Pricing American Options with Uncertain Volatility through Stochastic Linear Complementarity[J].Computational Optimization and Applications,2011,50(2):263-286. 被引量:1
  • 5Telly,J.A.Valuing American options in path simulation model[J].Mathematics and economics,1995,16(2):166-169. 被引量:1
  • 6张艳萍..带历史价格约束的美式期权定价线性互补模型[D].大连理工大学,2013:
  • 7韩继业, 修乃华, 戚厚铎..非线性互补理论与算法[M],2006.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部