期刊文献+

氢气爆燃作用下核电站安全壳力学响应数值模拟分析 被引量:1

Numerical Analysison mechanical properties of containment in the nuclear power plant under hydrogen deflagration
下载PDF
导出
摘要 在核电站严重事故中,由氢气爆燃产生的压力载荷会危及安全壳完整性致其失效,进而造成放射性物质泄漏的严重危害。通过ANSYS/Fluent有限元数值模拟软件,建立了安全壳有限元模型,并对安全壳内氢气爆燃过程以及其力学特性进行了数值模拟研究,获得了氢气爆炸过程中的超压值、升压速率、安全壳变形以及压应力分布。结果表明:爆燃波传递引起压强升高,火焰阵面处压强最高,爆燃波所经区域超压疾速上升随后快速下降;爆燃作用下,顶部壳体和下部筒体连接区域混凝土位移最大,最大压应力也集中分布在该区域,最易受到破坏。获得的结论可为安全壳结构抗爆设计和安全性研究提供理论参考。 During severe accidents in the nuclear power plant(NPP),the pressure load produced by hydrogen deflagration would hazard the integrity of containment and make it become invalid,which could result in a radioactive release.A finite element model has been established by ANSYS/Fluent.The process of hydrogen deflagration and mechanical properties of the containment have been investigated by numerical method.The overpressure value,pressure boost rate,deformation,and stress distribution of the containment under hydrogen deflagration are obtained.The results indicate that the pressure rise is caused by deflagration wave,the maximum pressure appears in the flame wave,the pressure of the deflagration area rises rapidly and then declines quickly;the concrete in the connected region between the shell and the cylinder is the most vulnerable to damage,and this area has the maximum displacement and the maximum compressive stress under hydrogen deflagration.The results obtained could provide theoretical reference for antiknock design and security research of the containment.
出处 《火灾科学》 CAS CSCD 北大核心 2016年第1期34-39,共6页 Fire Safety Science
基金 国家自然科学基金项目资助(51576212) 国家自然科学基金重点项目资助(51534008) 建筑消防工程技术公安部重点实验室开放课题(KFKT2014ZD02) 中央高校基本科研业务费专项资金资助
关键词 氢气爆燃 安全壳 数值模拟 力学响应 核电站 Hydrogen deflagration Containment Numerical analysis Mechanical properties Nuclear power plant
  • 相关文献

参考文献18

二级参考文献38

  • 1刘世忠.基于ANSYS的钢筋混凝土结构非线性有限元分析[J].四川建筑,2006,26(2):92-95. 被引量:29
  • 2Travis J R, Necker G A, Royl P A. Computational Fluid Dynamics Code for Gases Aerosols, and Combustion[R]. Theory and Computational Model, Reports FZKA-5994, LA-13357-M, 1998. 被引量:1
  • 3Jongtae Kim, Seong-Wan Hong, Sang-Baik Kim, et al. Three-Dimensional Behaviors of the Hydrogen and Steam in the APR1400 Containment During a Hypothetical Loss of Feed Water Accident[J]. Annals of Nuclear Energy, 2007, 34(12): 992-1001. 被引量:1
  • 4Leckner B. Spectral and Total Emissivity of Water Vapor and Carbon Dioxide[J]. Combustion and Flame, 1972, 19(1): 33-48. 被引量:1
  • 5Bachellerie E, Arnould F, Auglaire M, et al. Generic Approach for Designing and Implementing a Passive Autocatalytic Recombiner PAR-system in Nuclear Power Plant Containment[J], Nuclear Engineering and Design, 2003, 221(1-3): 151-165. 被引量:1
  • 6Breitung W. Chan C K., Dorofeev S B. Flame Accelera- tion and Deflagration to Detonation Transition in Nuclear Safety[R]. SOAR. NEA/CSNI, 2000. 被引量:1
  • 7EPRI. Advanced Light Water Reactor, Utility Requirements Document, Volume I, Palo Alto, CA, 1990, (EPRI publication). 被引量:1
  • 8EPRI. Advanced Light Water Reactor, Utility Requirements Document, Volume III, ALWR Passive Plant. Revision 7, 12/1995, (EPRI publication). 被引量:1
  • 9IAEA. Objectives for the Development of Advanced Nuclear Plants, IAEA-TECDOC-682. Vienna. 1993. 被引量:1
  • 10DOE. A Roadmap to Deploy New Nuclear Power Plants in the United States by 2010. Volume Ⅱ, Main Report (internal), 31/10/2001. 被引量:1

共引文献65

同被引文献9

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部